997 resultados para Clones de álamos
Resumo:
A Schistosoma mansoni adult worm anionic fraction (PIII) has previously been shown to protect mice against challenge infection and to reduce pulmonary and hepatic granulomatous hypersensitivity. Serum from PIII-immunized rabbit was used to screen a lgt11 cDNA library from S. mansoni adult worm in order to identify antigens capable of modulating granulomatous hypersensitivity. We obtained four clones with 400 (Sm-III.11), 900 (Sm-III.16), 1100 (Sm-III.10) and 1300 (Sm-III.12) bp of length. All clone-specific antibodies were able to recognize most of the PIII components. The sequence analysis showed that these clones presented high homology with S. mansoni paramyosin (Sm-97). These findings ascribe a new function to this antigen with an important role in modulation of granulomatous hypersensitivity to S. mansoni eggs
Resumo:
Two rat monoclonal antibodies (mAbs), 44-22-1 and 46-6B5, which recognize an alloreactive cytotoxic clone, 3F9, have been further tested on a panel of T hybridomas and cytotoxic T-cell clones for binding and functional activities. The mAbs recognized only those cells sharing the expression of the T-cell receptor beta-chain variable region gene V beta 6 with 3F9. All V beta 6+ cells were activated by these mAbs under cross-linking conditions and their antigen-specific activation was blocked by soluble mAb. Furthermore, depletion of 46-6B5+ normal lymph node T cells eliminated all cells expressing the epitope recognized by 44-22-1 and V beta 6 mRNA.
Resumo:
Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.
Resumo:
One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.
Resumo:
CHO is the most commonly used mammalian host for the generation of cell lines allowing for the production of high quality therapeutic proteins. The generation of such cell lines is a lengthy and resource-intensive process requiring extensive screening in order to isolate candidates with optimal characteristics, such as growth, stability and productivity. For this reason, the biotechnology industry invests much effort in attempts to optimize CHO expression systems in order to streamline and shorten the cell line selection process. Based on preliminary observations of a facilitated selection of CHO-GS cell lines expressing members of the IL-17 cytokine family, this study investigates the use of IL-17F as a novel enhancing factor for CHO cell line generation. Using two different CHO expression systems (exploiting GS and DHFR-based selection), we demonstrated that IL-17F expression caused a significant increase in the occurrence of colonies during the selection process. All colonies selected produced substantial amounts of IL-17F, suggesting that benefits were conferred, during selection, to those cells expressing the cytokine. Furthermore, transgene expression levels were significantly increased when the selection pressure was raised to a level that would not normally be permissive for colony selection (i.e. 100 |o.M MSX for the CHO-GS expression system or 1000 nM MTX for the CHO-DHFR system). Finally, IL-17F expression was also found to enhance the rate of appearance of clones during single cell subcloning in the absence of selection pressure. Overall, these benefits have the potential to allow a substantial reduction in the length of cell line generation while significantly increasing cell line productivity. Nevertheless, we found that the high IL-17F expression levels required to convey enhancing effects was a limitation when attempting to co-express IL-17F and a recombinant soluble protein of therapeutic interest from independent CMV promoters within the same expression vector. In order to understand and overcome this limitation, studies were designed to characterize the IL-17F enhancing effect at the molecular and cellular level. Regular supplementation of recombinant biologically-active IL-17F into the culture medium during cell line selection was not able to reproduce the enhancing effects of endogenous IL-17F expression. In addition, increased IL-17F expression correlated with increased CHO-GS selection transgene expression at the single cell level. This data suggested a possible effect of IL-17F on viral promoter activity or transgene mRNA stability. It also provided direct evidence that the cells expressing the highest amounts of IL-17F obtained the most benefit. Overall data obtained from these study implied that IL-17F may act through an intracellular mechanism, possibly exerted during secretion. We therefore initiated experiments designed to determine the specific compartment(s) within which IL-17F triggers its effect. This work has identified IL-17F as a potentially powerful tool to optimize the CHO cell line generation process. The characterization of this enhancing effect at the molecular level has given us several insights into overcoming the current limitations, thus paving the way for the development of a viable technology that can be exploited within the biotechnology industry. - La CHO est la cellule hôte de mammifere la plus couramment utilisée dans la création de lignée cellulaire produisant des protéines thérapeutiques de haute qualité. La génération de ces lignées cellulaires est un processus long et exigeant l'utilisation de techniques de sélection robustes afin d'isoler des candidats possédants les caractéristiques optimales de croissance, de productivité et de stabilité d'expression. Les industries biopharmaceutiques ont investi beaucoup d'efforts afin d'optimiser les systèmes d'expression CHO dans le but raccourcir la longueur du procédé de sélection de lignées cellulaires et aussi d'en augmenter l'efficacité. A partir d'observations préliminaires obtenues lors de la génération de lignées cellulaires CHO- GS exprimant une cytokine appartenant à la famille des IL-17, nous avons réalisé une étude portant sur l'utilisation de l'IL-17F humaine (IL-17F) comme nouveau facteur d'optimisation pour la génération de lignées cellulaires CHO. Nous avons démontré, en utilisant les deux systèmes de sélection et d'expression CHO couramment utilisés (le premier exploitant la GS et l'autre basée sur la DHFR), que l'expression de l'IL-17F permet une augmentation significative de la fréquence d'apparition de colonies durant le processus de sélection de lignées cellulaires. Les différentes colonies sélectionnées expriment des quantités substantielles d'IL-17F, suggérant un effet bénéfique lors de la sélection qui serait exclusivement conféré aux cellules exprimant la cytokine. En outre, le niveau d'expression du transgene se trouve significativement augmenté lorsque la pression de sélection est portée à un niveau habituellement trop élevé pour permettre la sélection de colonies (soit 100 |JM MSX pour le système d'expression CHO-GS ou 1000 nM MTX pour le système CHO- DHFR). Enfin, l'expression d'IL-17F permet également d'améliorer la vitesse d'apparition de clones pendant une étape de sous-clonage en l'absence de pression de sélection. L'ensemble de ces effets bénéfiques permettent une réduction substantielle de la durée de génération de lignées cellulaires tout en augmentant considérablement la productivité des lignées obtenues. Néanmoins, nous avons constaté que la nécessité d'exprimer des niveaux élevés d'IL-17F afin obtenir l'ensemble de ses effets bénéfiques devient une contrainte lors de l'utilisation d'un vecteur d'expression composé de deux promoteurs CMV indépendants pour la co-expression de la cytokine et d'une protéine soluble présentant un intérêt thérapeutique. Afin de mieux comprendre et de surmonter cette limitation, plusieurs études ont été effectuées dans le but de mieux caractériser l'effet de IL-17F au niveau subcellulaire. L'apport régulier en IL-17F recombinante et biologiquement active dans le milieu de culture lors de la sélection de lignées cellulaires ne permet pas de reproduire les effets bénéfiques observés par l'expression endogène d'IL-17F. En outre, nous avons constaté que, lors de l'utilisation du système CHO- GS, l'augmentation d'expression de 1TL-17F est corrélée à un accroissement de l'expression du marqueur de sélection au niveau cellulaire. Ces résultats suggèrent un possible effet d'IL- 17F sur l'activité des promoteurs viraux et ainsi fournissent une preuve directe que les cellules exprimant de haut niveau d'IL-17F sont celles qui en profitent le plus. L'ensemble de ces observations mettrait en avant que l'effet d'IL-17F se ferait selon un mécanisme intracellulaire. Nous avons donc étudié le(s) compartiment(s) spécifique(s) dans lequel IL-17F pourrait exercer son effet. Ce travail a permis de définir IL-17F comme un puissant outil pour l'optimisation des procédés de génération de lignées cellulaires CHO. La caractérisation de cette amélioration de l'effet au niveau moléculaire nous a donné plusieurs indications sur la manière de dépasser les limitations actuelles, ouvrant ainsi la voie au développement d'une technologie viable qui peut être exploitée pars l'industrie biotechnologique.
Resumo:
Staphylococcus aureus is recognized as one of the major human pathogens and is by far one of the most common nosocomial organisms. The genetic basis for the emergence of highly epidemic strains remains mysterious. Studying the microevolution of the different clones of S. aureus is essential for identifying the forces driving pathogen emergence and spread. The aim of the present study was to determine the genetic changes characterizing a lineage belonging to the South German clone (ST228) that spread over ten years in a tertiary care hospital in Switzerland. For this reason, we compared the whole genome of eight isolates recovered between 2001 and 2008 at the Lausanne hospital. The genetic comparison of these isolates revealed that their genomes are extremely closely related. Yet, a few more important genetic changes, such as the replacement of a plasmid, the loss of large fragments of DNA, or the insertion of transposases, were observed. These transfers of mobile genetic elements shaped the evolution of the ST228 lineage that spread within the Lausanne hospital. Nevertheless, although the strains analyzed differed in their dynamics, we have not been able to link a particular genetic element with spreading success. Finally, the present study showed that new sequencing technologies improve considerably the quality and quantity of information obtained for a single strain; but this information is still difficult to interpret and important investments are required for the technology to become accessible for routine investigations.
Resumo:
The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.
Resumo:
Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis.
Resumo:
Ribotyping has been widely used to characterise the seventh pandemic clone including South American and O139 variants which appeared in 1991 and 1992 respectively. To reveal the molecular basis of ribotype variation we analysed the rrn operons and their flanking regions. All but one variation detected by BglI, the most discriminatory enzyme, was found to be due to changes within the rrn operons, resulting from recombination between operons. The recombinants are detected because of the presence of a BglI site in the 16S gene in three of the nine rrn operons and/or changes of intergenic spacer types of which four variants were identified. As the frequency of rrn recombination is high, ribotyping becomes a less useful tool for evolutionary studies and long term monitoring of the pathogenic clones of Vibrio cholerae as variation could undergo precise reversion by the same recombination event.
Resumo:
Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.
Resumo:
BACKGROUND: The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC x parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. RESULTS: We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. CONCLUSION: When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.
Resumo:
Aspergillus lentulus, an Aspergillus fumigatus sibling species, is increasingly reported in corticosteroid-treated patients. Its clinical significance is unknown, but the fact that A. lentulus shows reduced antifungal susceptibility, mainly to voriconazole, is of serious concern. Heterologous expression of cyp51A from A. fumigatus and A. lentulus was performed in Saccharomyces cerevisiae to assess differences in the interaction of Cyp51A with the azole drugs. The absence of endogenous ERG11 was efficiently complemented in S. cerevisiae by the expression of either Aspergillus cyp51A allele. There was a marked difference between azole minimum inhibitory concentration (MIC) values of the clones expressing each Aspergillus spp. cyp51A. Saccharomyces cerevisiae clones expressing A. lentulus alleles showed higher MICs to all of the azoles tested, supporting the hypothesis that the intrinsic azole resistance of A. lentulus could be associated with Cyp51A. Homology models of A. fumigatus and A. lentulus Cyp51A protein based on the crystal structure of Cyp51p from Mycobacterium tuberculosis in complex with fluconazole were almost identical owing to their mutual high sequence identity. Molecular dynamics (MD) was applied to both three-dimensional protein models to refine the homology modelling and to explore possible differences in the Cyp51A-voriconazole interaction. After 20ns of MD modelling, some critical differences were observed in the putative closed form adopted by the protein upon voriconazole binding. A closer study of the A. fumigatus and A. lentulus voriconazole putative binding site in Cyp51A suggested that some major differences in the protein's BC loop could differentially affect the lock-up of voriconazole, which in turn could correlate with their different azole susceptibility profiles.
Resumo:
The ability of synthetic P. falciparum (NANP)n circumsporozoite peptides to elicit murine T cell proliferative responses was studied. When C57BL/6, C3H, and DBA/2 mice were injected with (NANP)40, only C57BL/6 (H-2b)-immune lymph node cells proliferated on restimulation in vitro with the same peptide. By using anti-I-A monoclonal antibodies or spleen cells from congenic H-2b mice as a source of antigen-presenting cells, the T cell proliferative response was shown to be restricted to the I-Ab region of the C57BL/6 haplotype. These results are in agreement with previous experiments which demonstrated that the anti-(NANP)40 antibody response was uniquely restricted to C57BL/6 (H-2b) mice. Several C57BL/6 long-term (NANP)n-specific T cell lines and clones were derived. All of the clones exhibited the L3T4 helper T cell phenotype. A considerable heterogeneity of T cell responses was observed when the lines and clones were stimulated with different concentrations of the various peptides studied. The results, together with the observed genetic restriction for both antibody and T cell responses, suggest that perhaps not all individuals who receive a similar repetitive tetrapeptide sporozoite malaria vaccine will develop T cell and or antibody responses.
Resumo:
The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.
Resumo:
The infection pattern in Swiss mice and Triatomine bugs (Rhodnius neglectus) of eleven clones and the original stock of a Trypanosoma cruzi isolate, derived from a naturally infected Didelphis marsupialis, were biochemically and biologically characterized. The clones and the original isolate were in the same zymodeme (Z1) except that two clones were found to be in zymodeme 2 when tested with G6PDH. Although infective, neither the original isolate nor the clones were highly virulent for the mice and lesions were only observed in mice infected with the original stock and one of the clones (F8). All clones and the original isolate infected bugs well while only the original isolate and clones E2 and F3 yielded high metacyclogenesis rates. An observed correlation between absence of lesions in the mammal host and high metacyclogenesis rates in the invertebrate host suggest a evolutionary trade off i.e. a fitness increase in one trait which is accompanied by a fitness reduction in a different one. Our results suggest that in a species as heterogeneous as T. cruzi, a cooperation effect among the subpopulations should be considered.