966 resultados para Chromosome cytology
Resumo:
Prostate cancer remains the second leading cause of male cancer deaths in the United States, yet the molecular mechanisms underlying this disease remain largely unknown. Cytogenetic and molecular analyses of prostate tumors suggest a consistent association with the loss of chromosome 10. Previously, we have defined a novel tumor suppressor locus PAC-1 within chromosome 10pter-q11. Introduction of the short arm of chromosome 10 into a prostatic adenocarcinoma cell line PC-3H resulted in dramatic tumor suppression and restoration of a programmed cell death pathway. Using a combined approach of comparative genomic hybridization and microsatellite analysis of PC-3H, I have identified a region of hemizygosity within 10p12-p15. This region has been shown to be involved in frequent loss of heterozygosity in gliomas and melanoma. To functionally dissect the region within chromosome 10p containing PAC-1, we developed a strategy of serial microcell fusion, a technique that allows the transfer of defined fragments of chromosome 10p into PC-3H. Serial microcell fusion was used to transfer defined 10p fragments into a mouse A9 fibrosarcoma cell line. Once characterized by FISH and microsatellite analyses, the 10p fragments were subsequently transferred into PC-3H to generate a panel of microcell hybrid clones containing overlapping deletions of chromosome 10p. In vivo and microsatellite analyses of these PC hybrids identified a small chromosome 10p fragment (an estimated 31 Mb in size inclusive of the centromere) that when transferred into the PC-3H background, resulted in significant tumor suppression and limited a region of functional tumor suppressor activity to chromosome 10p12.31-q11. This region coincides with a region of LOH demonstrated in prostate cancer. These studies demonstrate the utility of this approach as a powerful tool to limit regions of functional tumor suppressor activity. Furthermore, these data used in conjunction with data generated by the Human Genome Project lent a focused approach to identify candidate tumor suppressor genes involved in prostate cancer. ^
Resumo:
Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^
Resumo:
A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^
High-resolution microarray analysis of chromosome 20q in human colon cancer metastasis model systems
Resumo:
Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^
Resumo:
Diethylstilbestrol (DES) is a known human carcinogen and teratogen whose mechanism of action remains undetermined. As essentially diploid Chinese hamster cell line (Don) was used to test diethylstilbestrol (DES), dienestrol, hexestrol and the naturally occurring estrogens, estradiol and estriol for their ability to cause metaphase arrest and to induce aneuploidy. These compounds arrest mitosis within a narrow range of high concentrations and induce aneuploidy in recovering cell populations. DES was the most effective arrestant on a comparative molar basis. Estradiol and estriol were less potent as arrestants but were effective inducers of aneuploidy. Aneuploidy was induced in a non-random manner. The smallest chromosomes were most frequently recorded in aneuploid cells. Using anti-tubulin antibody and indirect immunofluorescence, it was found that DES inhibits bi-polar spindle assembly and disrupts the cytoplasmic microtubule complex (CMTC). Estradiol arrests mitosis in a manner that allows spindle assembly. Estradiol has no apparent effect on the CMTC. The naturally occurring estrogens caused chromosome displacement during mitotic arrest. Electron microscopy confirmed that the displaced chromosomes appeared at the polar regions of arrested cells. The arresting effect of estradiol, and to some extent DES, was reduced by the addition of dibutyryl cyclic adenosine monophosphate (db-cAMP). Aneuploidy induction by DES and similar compounds may be related to their carcinogenic and/or teratogenic potential. ^
Resumo:
Prenatal diagnosis is traditionally made via invasive procedures such as amniocentesis and chorionic villus sampling (CVS). However, both procedures carry a risk of complications, including miscarriage. Many groups have spent years searching for a way to diagnose a chromosome aneuploidy without putting the fetus or the mother at risk for complications. Non-invasive prenatal testing (NIPT) for chromosome aneuploidy became commercially available in the fall of 2011, with detection rates similar to those of invasive procedures for the common autosomal aneuploidies (Palomaki et al., 2011; Ashoor et al. 2012; Bianchi et al. 2012). Eventually NIPT may become the diagnostic standard of care and reduce invasive procedure-related losses (Palomaki et al., 2011). The integration of NIPT into clinical practice has potential to revolutionize prenatal diagnosis; however, it also raises some crucial issues for practitioners. Now that the test is clinically available, no studies have looked at the physicians that will be ordering the testing or referring patients to practitioners who do. This study aimed to evaluate the attitudes of OB/GYN’s and how they are incorporating the test into clinical practice. Our study shows that most physicians are offering this new, non-invasive technology to their patients, and that their practices were congruent with the literature and available professional society opinions. Those physicians who do not offer NIPT to their patients would like more literature on the topic as well as instructive guidelines from their professional societies. Additionally, this study shows that the practices and attitudes of MFMs and OBs differ. Our population feels that the incorporation of NIPT will change their practices by lowering the amount of invasive procedures, possibly replacing maternal serum screening, and that it will simplify prenatal diagnosis. However, those physicians who do not offer NIPT to their patients are not quite sure how the test will affect their clinical practice. From this study we are able to glean how physicians are incorporating this new technology into their practice and how they feel about the addition to their repertoire of tests. This knowledge gives insight as to how to best move forward with the quickly changing field of prenatal diagnosis.
Resumo:
Aegilops biuncialis y Aegilops geniculata son dos especies silvestres alotetraploides, con genomios UM, que constituyen un importante reservorio de genes de interés para la mejora del trigo. En este estudio se ha analizado la distribución cromosómica de diferentes secuencias de tipo microsatélites (?single sequence repeat?, SSR) y su relación con las translocaciones intergenómicas U/M, frecuentes en accesiones de ambas especies. En la mayoría de los cromosomas U y en algunos M, se ha localizado una única señal pericéntromérica de la secuencia (ACG)n, mientras que la secuencia (GAA)n aparece como grandes ?clusters? de localización pericentromérica y, en ocasiones, intersticial. En las 5 accesiones portadoras de translocaciones U/M analizadas, se ha comprobado una asociación estadísticamente significativa entre el punto de rotura-reunión de la reordenación y regiones cromosómicas ricas en secuencias SSR.
Resumo:
Advanced wheat lines carrying the Hessian fly resistance gene H27 were obtained by backcrossing the wheat/Aegilops ventricosa introgression line, H-93-33, to commercial wheat cultivars as recurrent parents. The Acph-N v 1 marker linked to the gene H27 on the 4Nv chromosome of this line was used for marker assisted selection. Advanced lines were evaluated for Hessian fly resistance in field and growth chamber tests, and for other agronomic traits during several crop seasons at different localities of Spain. The hessian fly resistance levels of lines carrying the 4Nv chromosome introgression (4D/4Nv substitution and recombination lines that previously were classified by in situ hybridisation) were high, but always lower than that of their Ae. ventricosa progenitor. Introgression lines had higher grain yields in infested field trials than those without the 4Nv chromosome and their susceptible parents, but lower grain yields under high yield potential conditions. The 4Nv introgression was also associated with later heading, and lower tiller and grain numbers/m2 . In addition, it was associated with longer and more lax spikes, and higher values of grain weight and grain protein content. However, the glutenin and gliadin expression, as well as the bread-making performance, were similar to those of their recurrent parents
Resumo:
Despite mounting genetic evidence implicating a recent origin of modern humans, the elucidation of early migratory gene-flow episodes remains incomplete. Geographic distribution of haplotypes may show traces of ancestral migrations. However, such evolutionary signatures can be erased easily by recombination and mutational perturbations. A 565-bp chromosome 21 region near the MX1 gene, which contains nine sites frequently polymorphic in human populations, has been found. It is unaffected by recombination and recurrent mutation and thus reflects only migratory history, genetic drift, and possibly selection. Geographic distribution of contemporary haplotypes implies distinctive prehistoric human migrations: one to Oceania, one to Asia and subsequently to America, and a third one predominantly to Europe. The findings with chromosome 21 are confirmed by independent evidence from a Y chromosome phylogeny. Loci of this type will help to decipher the evolutionary history of modern humans.
Resumo:
Imprinted genes tend to occur in clusters. We have identified a cluster in distal mouse chromosome (Chr) 2, known from early genetic studies to contain both maternally and paternally imprinted, but unspecified, genes. Subsequently, one was identified as Gnas, which encodes a G protein α subunit, and there is clinical and biochemical evidence that the human homologue GNAS1, mutated in patients with Albright hereditary osteodystrophy, is also imprinted. We have used representational difference analysis, based on parent-of-origin methylation differences, to isolate candidate imprinted genes in distal Chr 2 and found two oppositely imprinted genes, Gnasxl and Nesp. Gnasxl determines a variant G protein α subunit associated with the trans-Golgi network and Nesp encodes a secreted protein of neuroendocrine tissues. Gnasxl is maternally methylated in genomic DNA and encodes a paternal-specific transcript, whereas Nesp is paternally methylated with maternal-specific expression. Their reciprocal imprinting may offer insight into the distal Chr 2 imprinting phenotypes. Remarkably, Gnasxl, Nesp, and Gnas are all part of the same transcription unit; transcripts for Gnasxl and Nesp are alternatively spliced onto exon 2 of Gnas. This demonstrates an imprinting mechanism in which two oppositely imprinted genes share the same downstream exons.
Resumo:
Alterations of human chromosome 8p occur frequently in many tumors. We identified a 1.5-Mb common region of allelic loss on 8p22 by allelotype analysis. cDNA selection allowed isolation of several genes, including FEZ1. The predicted Fez1 protein contained a leucine-zipper region with similarity to the DNA-binding domain of the cAMP-responsive activating-transcription factor 5. RNA blot analysis revealed that FEZ1 gene expression was undetectable in more than 60% of epithelial tumors. Mutations were found in primary esophageal cancers and in a prostate cancer cell line. Transcript analysis from several FEZ1-expressing tumors revealed truncated mRNAs, including a frameshift. Alteration and inactivation of the FEZ1 gene may play a role in various human tumors.
Resumo:
Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.
Resumo:
In Bacillus subtilis, parE and parC were shown to be essential genes for the segregation of replicated chromosomes. Disruption of either one of these genes resulted in failure of the nucleoid to segregate. Purified ParE and ParC proteins reconstituted to form topoisomerase IV (topo IV), which was highly proficient for ATP-dependent superhelical DNA relaxation and decatenation of interlocked DNA networks. By immunofluorescence microscopy and by directly visualizing fluorescence by using green fluorescence protein fusions, we determined that ParC is localized at the poles of the bacteria in rapidly growing cultures. The bipolar localization of ParC required functional ParE, suggesting that topo IV activity is required for the localization. ParE was found to be distributed uniformly throughout the cell. On the other hand, fluorescence microscopy showed that the GyrA and GyrB subunits of gyrase were associated with the nucleoid. Our results provide a physiologic distinction between DNA gyrase and topo IV. The subcellular localization of topo IV provides physical evidence that it may be part of the bacterial segregation machinery.
Resumo:
H3 phosphorylation has been correlated with mitosis temporally in mammalian cells and spatially in ciliated protozoa. In logarithmically growing Tetrahymena thermophila cells, for example, H3 phosphorylation can be detected in germline micronuclei that divide mitotically but not in somatic macronuclei that divide amitotically. Here, we demonstrate that micronuclear H3 phosphorylation occurs at a single site (Ser-10) in the amino-terminal domain of histone H3, the same site phosphorylated during mitosis in mammalian cells. Using an antibody specific for Ser-10 phosphorylated H3, we show that, in Tetrahymena, this modification is correlated with mitotic and meiotic divisions of micronuclei in a fashion that closely coincides with chromosome condensation. Our data suggest that H3 phosphorylation at Ser-10 is a highly conserved event among eukaryotes and is likely involved in both mitotic and meiotic chromosome condensation.