983 resultados para Chemical engineering.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Double Convected Pom-Pom model was recently introduced to circumvent some numerical and theological defects found in other formulations of the Pom-Pom concept. It is used here for the simulation of a benchmark problem: the flow in an abrupt planar contraction. The predictions are compared with birefringence measurements and show reasonable quantitative agreement with experimental data. A parametric study is also carried out with the aim of analysing the effect of the branching parameter on vortex dynamics and extrudate swell. The results show that the Double Convected Pom-Pom model (DCPP) model is able to discriminate between branched and linear macromolecular structures in accordance with experimental observations. In that respect, the role of the extensional properties in determining complex flow behaviour is stressed. Also, the ratio of the first normal stress difference to the shear stress appears to play a major role in die swell observation. For the time being, the role of the second normal stress difference appears to be less obvious to evaluate in this complex flow. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen adsorption in alkali-doped carbon materials is investigated theoretically. Our calculations show that hydrogen molecules can be physically adsorbed on alkali-doped graphite at 0 K but such an adsorption is thermodynamically unfavourable. The binding energy of hydrogen adsorption decreases significantly with the increase in temperature and becomes nearly zero at ambient temperature. We suggest that it may be unlikely to observe any hydrogen uptake in alkali-doped carbon materials at or above ambient temperature in the TGA (thermogravimetric) system, the previously reported hydrogen uptake in alkali-doped carbon materials was caused by either uncyclable chemisorbed hydrogen on the defects of carbon (defects were produced by repeated heat treatment) and/or moisture adsorption. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive study has been conducted to compare the adsorptions of alkali metals (including Li, Na, and K) on the basal plane of graphite by using molecular orbital theory calculations. All three metal atoms prefer to be adsorbed on the middle hollow site above a hexagonal aromatic ring. A novel phenomenon was observed, that is, Na, instead of Li or K, is the weakest among the three types of metal atoms in adsorption. The reason is that the SOMO (single occupied molecular orbital) of the Na atom is exactly at the middle point between the HOMO and the LUMO of the graphite layer in energy level. As a result, the SOMO of Na cannot form a stable interaction with either the HOMO or the LUMO of the graphite. On the other hand, the SOMO of Li and K can form a relatively stable interaction with either the HOMO or the LUMO of graphite. Why Li has a relatively stronger adsorption than K on graphite has also been interpreted on the basis of their molecular-orbital energy levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the complexities involved with measuring activated sludge floc size distributions, this parameter has largely been ignored by wastewater researchers and practitioners. One of the major reasons has been that instruments able to measure particle size distributions were complex, expensive and only provided off-line measurements. The Focused Beam Reflectance Method (FBRM) is one of the rare techniques able to measure the particle size distribution in situ. This paper introduces the technique for monitoring wastewater treatment systems and compares its performance with other sizing techniques. The issue of the optimal focal point is discussed, and similar conclusions as found in the literature for other particulate systems are drawn. The study also demonstrates the capabilities of the FBRM in evaluating the performance of settling tanks. Interestingly, the floc size distributions did not vary with position inside the settling tank flocculator. This was an unexpected finding, and seriously questioned the need for a flocculator in the settling tank. It is conjectured that the invariable size distributions were caused by the unique combination of high solids concentration, low shear and zeolite dosing. (C) 2004 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30degreesC was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%similar to85.5% associated with 1.5similar to2.0 g/L fungal biomass produced in 36 h of fermentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant acetylene reduction and therefore N-2 fixation was observed for Lyngbya majuscula only during dark periods, which suggests that oxygenic photosynthesis and N-2 fixation are incompatible processes for this species. Results from a series of batch and continuous-flow-culture reactor studies showed that the specific growth rate and N-2 fixation rate of L, majuscula increased with phosphate (P-PO4) concentration up to a maximum value and thereafter remained constant. The P-PO4 concentrations corresponding to the maximum N-2 fixation and maximum growth rates were -0.27 and -0.18 muM respectively and these values are denoted as the saturation values for N-2 fixation and growth respectively. Regular monitoring studies in Moreton Bay, Queensland, show that concentrations Of P-PO4 generally exceed these saturation values over a large portion of the Bay and therefore, the growth of the bloom-forming L, majuscula is potentially maximised throughout much of the Bay by the elevated P-PO4 concentrations. Results from other studies suggest that the elevated P-PO4 concentrations in the Bay can be largely attributed to discharges from waste-water treatment plants (WWTPs), and thus it is proposed that the control of the growth of L. majuscula in Moreton Bay will require a significant reduction in the P load from the WWTP discharges. If the current strategy of N load reduction for these discharges is maintained in the absence of substantial P load reduction, it is hypothesised that the growth of L, majuscula and other diazotrophs in Moreton Bay will increase in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we proposed a composite depth of penetration (DOP) approach to excluding bottom reflectance in mapping water quality parameters from Landsat thematic mapper (TM) data in the shallow coastal zone of Moreton Bay, Queensland, Australia. Three DOPs were calculated from TM1, TM2 and TM3, in conjunction with bathymetric data, at an accuracy ranging from +/-5% to +/-23%. These depths were used to segment the image into four DOP zones. Sixteen in situ water samples were collected concurrently with the recording of the satellite image. These samples were used to establish regression models for total suspended sediment (TSS) concentration and Secchi depth with respect to a particular DOP zone. Containing identical bands and their transformations for both parameters, the models are linear for TSS concentration, logarithmic for Secchi depth. Based on these models, TSS concentration and Secchi depth were mapped from the satellite image in respective DOP zones. Their mapped patterns are consistent with the in situ observed ones. Spatially, overestimation and underestimation of the parameters are restricted to localised areas but related to the absolute value of the parameters. The mapping was accomplished more accurately using multiple DOP zones than using a single zone in shallower areas. The composite DOP approach enables the mapping to be extended to areas as shallow as <3 m. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the area of dry particle breakage, Discrete Element Method (DEM) simulations have been widely used to analyse the sensitivity of various physical parameters to the behaviour of agglomerates during breakage. This paper looks at the effect of agglomerate shape and structure on the mechanisms and extent of breakage of dry agglomerates under compressive load using DEM simulations. In the simulations, a spherical-shaped agglomerate produced within the DEM code is compared with an irregularly shaped agglomerate, whose structure is that of an actual granule that was characterised with X-ray microtomography (muCT). Both agglomerates have identical particle size distribution, coordination number and surface energy values, with only the agglomerate shape and structure differing between the two. The work here details the breakage behaviour with a number of traditional DEM output parameters (i.e., contact/cluster distributions) with showing vastly different behaviour between the two agglomerates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a compact tunable filter based on a novel microfluidic single beam Mach-Zehnder interferometer. The optical path difference occurs during propagation across a fluid-air interface ( meniscus), the inherent mobility of which provides tunability. Optical losses are minimized by optimizing the meniscus shape through surface treatment. Optical spectra are compared to a 3D beam propagation method simulations and good agreement is found. Tunability, low insertion loss and strength of the resonance are well reproduced. The device performance displays a resonance depth of - 28 dB and insertion loss maintained at - 4 dB. (C) 2004 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of modulated temperature differential scanning calorimetry (MTDSC) has provided further insight into the gelatinisation process since it allows the detection of glass transition during gelatinisation process. It was found in this work that the glass transition overlapped with the gelatinisation peak temperature for all maize starch formulations studied. Systematic investigation on maize starch gelatinisation over a range of water-glycerol concentrations with MTDSC revealed that the addition of glycerol increased the gelatinisation onset temperature with an extent that depended on the water content in the system. Furthermore, the addition of glycerol promoted starch gelatinisation at low water content (0.4 g water/g dry starch) and the enthalpy of gelatinisation varied with glycerol concentration (0.73-19.61 J/g dry starch) depending on the water content and starch type. The validities of published gelatinisation models were explored. These models failed to explain the glass transition phenomena observed during the course of gelatinisation and failed to describe the gelatinisation behaviour observed over the water-glycerol concentrations range investigated. A hypothesis for the mechanisms involved during gelatinisation was proposed based on the side chain liquid crystalline polymer model for starch structure and the concept that the order-disorder transition in starch requires that the hydrogen bonds (the major structural element in the granule packing) to be broken before the collapse of order (helix-coil transition) can take place. (C) 2004 Elsevier Ltd. All rights reserved.