971 resultados para Chemical Defense-mechanism
Resumo:
The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.
Resumo:
Gelation of UHT milk during storage (age gelation) is a major factor limiting its shelf-life. The gel which forms is a three-dimensional protein matrix initiated by interactions between the whey protein beta -lactoglobulin and the kappa -casein of the casein micelle during the high heat treatment. These interactions lead to the formation of a beta -lactoglobulin-kappa -casein complex (beta kappa -complex). A feasible mechanism of age gelation is based on a two-step process; in the first step, the beta kappa -complexes dissociate from the casein micelles due to the breakdown of multiple anchor sites on kappa -casein, and in the second step, these complexes aggregate into a three-dimensional matrix. When a critical volume concentration of the beta kappa -complex is attained, a gel of custard-like consistency is formed. Significant factors which influence the onset of gelation include the nature of the heat treatment, proteolysis during storage, milk composition and quality, seasonal milk production factors and storage temperature. In this review, age gelation is discussed in terms of these factors, causative mechanisms and procedures for controlling it.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
The mechanism of growth of silicate films at the air/liquid interface has been investigated in situ by a series of grazing incidence diffraction experiments using a 20 x 25 cm(2) imaging plate as the detector. C(18)TAX (X = Br- or Cl-) has been used as the film templating surfactant. The formation of a layered phase, prior to growth of the hexagonal mesophase in C(18)TABr templated films. has been seen. This layered structure has a significantly shorter d spacing compared to the final hexagonal film (43 versus 48 Angstrom, respectively). The correlation lengths associated with the development of the hexagonal in-plane diffraction spots are much longer in-plane than perpendicular to the air/liquid interface (300 Angstrom versus 50 Angstrom). This implies that the film forms via the growth or aggregation of islands that are initially only a micelle or two thick. which then grow down into the solution.
Resumo:
The volatile components of the chin gland secretion of the wild European rabbit, Oryctolagus cuniculus (L.), were investigated with the use of gas chromatography. Studies of the chemical nature of this secretion by previous workers demonstrated that it was important in the maintenance of social structure in this species. This study identified 34 different volatile components that consist primarily of aromatic and aliphatic hydrocarbons. Especially common are a series of alkyl-substituted benzene derivatives that provide most of the compound diversity in the secretion. Samples of chin gland secretion collected from animals at three different geographical locations, separated by more than 100 km, showed significant differences in composition. This work suggests that variation among populations needs to be considered when undertaking semiochemical research. Alternate nonparametric methods are also used for the analysis of chromatographic data.
Resumo:
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.
Resumo:
The high speciFIcity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability. Rigorous physicochemical analysis together with synthetic peptide chemistry is a prerequisite for detailed conformational analysis and to provide sufficient quantities of alpha-conotoxins for activity assessment and structure-activity relationship studies.
Resumo:
Although prosimians are greatly olfaction-oriented, little is known about the specifics of how they use scent to communicate. In this preliminary study we attempted to delineate intra- and interspecific differences among the anogenital gland secretions of two lemur species (Lemur catta and Propithecus verreauxi coquereli) using gas chromatography-mass spectrometry (GC-MS). The results indicate that the two species are discernible through scent. Furthermore, we were able to identify reproductive status using this technique. The anogenital secretions of the different sexes in L. catta, though perhaps not P. v. coquereli, are chemically distinguishable. Given this information, it appears that at least some lemur species can use scent marks to determine species, sex, and reproductive status. (C) 2004 Wiley-Liss, Inc.
Resumo:
In stingless bees, recruitment of hive bees to food sources involves thoracic vibrations by foragers during trophallaxis. The temporal pattern of these vibrations correlates with the sugar concentration of the collected food. One possible pathway for transfering such information to nestmates is through airborne sound. In the present study, we investigated the transformation of thoracic vibrations into air particle velocity, sound pressure, and jet airflows in the stingless bee Melipona scutellaris. Whereas particle velocity and sound pressure were found all around and above vibrating individuals, there was no evidence for a jet airflow as with honey bees. The largest particle velocities were measured 5 mm above the wings (16.0 +/- 4.8 mm s(-1)). Around a vibrating individual, we found maximum particle velocities of 8.6 +/- 3.0 mm s(-1) (horizontal particle velocity) in front of the bee`s head and of 6.0 +/- 2.1 mm s(-1) (vertical particle velocity) behind its wings. Wing oscillations, which are mainly responsible for air particle movements in honey bees, significantly contributed to vertically oriented particle oscillations only close to the abdomen in M. scutellaris(distances <= 5 mm). Almost 80% of the hive bees attending trophallactic food transfers stayed within a range of 5 mm from the vibrating foragers. It remains to be shown, however, whether air particle velocity alone is strong enough to be detected by Johnston`s organ of the bee antenna. Taking the physiological properties of the honey bee`s Johnston`s organ as the reference, M. scutellaris hive bees are able to detect the forager vibrations through particle movements at distances of up to 2 cm.
Resumo:
The use of antioxidants during chemotherapy has been shown to reduce or prevent the undesirable effects experienced by healthy cells. Micronutrient selenium is well known for its antioxidant properties; however, selenium exhibits a bimodal nature in that both its beneficial and toxic properties lie within a limited and narrow dose range. The present study investigated the possible protective effects of selenomethionine (SM) on the cytotoxicity, genotoxicity and clastogenicity of the chemotherapic doxorubicin (DXR), a key chemotherapic used in cancer treatment. Human peripheral lymphocytes were treated in vitro with varying concentrations of SM (0.25 mu M, 0.5 mu M, 1.0 mu M and 2.0 mu M), tested in combination with DXR (0.15 mu g/mL). SM alone was not cytotoxic and when combined with DXR treatment, reduced the DNA damage index significantly, the frequency of chromosomal aberrations, the number of aberrant metaphases and the frequency of apoptotic cells. The mechanism of chemoprotection of SM may be related to its antioxidant properties as well as its ability to interfere with DNA repair pathways. Therefore this study showed that SM is effective in reducing the genetic damage induced by the antitumoral agent DXR. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cyrtopodium includes similar to 42 species, among which is Cyrtopodium polyphyllum (Vell.) Pabst ex F. Barros that occurs in a rainforest in south-eastern Brazil. Its non-rewarding flowers, which attract Centridini bees by deceit, are rain-assisted self-pollinated, a phenomenon rarely found in orchids and other plant families. In addition, self-pollination has never been reported in Cyrtopodiinae and data on the pollination of South American orchids are scarce. Flowers were observed at different times of the day, on both sunny and rainy days, to record floral morphology, visitors and the effects of rainfall on flowers. On rainy days, water accumulates on the stigma and dissolves the adhesive substance of the stigmatic surface. A viscous drop thus forms, which contacts the pollinarium. When evaporation makes the viscous drop shrink, the drop moves the pollinarium with the anther onto the stigmatic surface and promotes self-pollination. Fruit set in natural habitat was low, with 2.4% at one study site, where a similar value (2.2%) was recorded in flowers self-pollinated by rain. In C. polyphyllum, facultative self-pollination assisted by rain is thus an important strategy that guarantees fruit set when pollinator`s visits are scarce, which is common in species pollinated by deceit.
Resumo:
Social insects use cuticular lipids for nestmate recognition. These lipids are chiefly hydrocarbons that can be endogenously produced or acquired from the environment. Although these compounds are already described as coming from different sources for different groups of social insects, nothing is known about the source of cuticular hydrocarbons in stingless bees. We used behavioural recognition tests and cuticle chemical investigation to elucidate the role of endogenous and environmentally based cues for nestmate recognition in the stingless bee Frieseomelitta varia. We found that although newly emerged workers present specific cuticle patterns according to their nest origin, these compounds are not used for nestmate recognition, since newly emerged workers are broadly accepted in different colonies. The cerumen used in nest construction played an important role in recognition behaviour. Twenty minutes of contact with foreign cerumen was sufficient to increase the rejection rates of nestmates and separate the groups of workers according to their chemical profile. On the other hand, tests of feeding on a common diet showed no effect on chemical cuticle pattern or recognition behaviour. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The capacity to distinguish colony members from strangers is a key component in social life. In social insects, this extends to the brood and involves discrimination of queen eggs. Chemical substances communicate colony affiliation for both adults and brood; thus, in theory, all colony members should be able to recognize fellow nestmates. In this study, we investigate the ability of Dinoponera quadriceps workers to discriminate nestmate and non-nestmate eggs based on cuticular hydrocarbon composition. We analyzed whether cuticular hydrocarbons present on the eggs provide cues of discrimination. The results show that egg recognition in D. quadriceps is related to both age and the functional role of workers. Brood care workers were able to distinguish nestmate from non-nestmate eggs, while callow and forager workers were unable to do so.