998 resultados para Chan
Resumo:
Within an isospin- and momentum-dependent hadronic transport model, it is shown that the recent FOPI data on the pi(-)/pi(+) ratio in central heavy-ion collisions at SIS/GSI energies [Willy Reisdorf , Nucl. Phys. A 781, 459 (2007)] provide circumstantial evidence suggesting a rather soft nuclear symmetry energy E-sym(rho) at rho >= 2 rho(0) compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.
Resumo:
Within the hadronic transport model IBUU04, we study the density-dependent symmetry energy by using the neutron-proton differential flow from the Sn-132+Sn-124 reactions at beam energies of 200, 400, 600 and 800MeV per nucleon. The strong effect of the symmetry energy is shown at the incident beam energy of 400 MeV/A. The small medium-effect of the neutron-proton differential flow is also found. We also study the neutron-proton differential flows with impact parameters of 3, 5, 7 fm. It is found that in semi-central collisions the sensitivity of the neutron-proton differential flow to the symmetry energy is larger.
Resumo:
Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-He-3 (t-He-3) ratio with both relative and differential transverse flows in semicentral Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-He-3 pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-He-3 relative and differential flows than the pi(-)/pi(+) ratio in the same reaction. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
An extensive study of the one-dimensional two-segment Frenkel-Kontorova FK model reveals a transition from the counterintuitive existence to the ordinary nonexistence of a negative-differential-thermal-resistance NDTR regime, when the system size or the intersegment coupling constant increases to a critical value. A “phase” diagram which depicts the relevant conditions for the exhibition of NDTR was obtained. In the existence of a NDTR regime, the link at the segment interface is weak and therefore the corresponding exhibition of NDTR can be explained in terms of effective phonon-band shifts. In the case where such a regime does not exist, the theory of phonon-band mismatch is not applicable due to sufficiently strong coupling between the FK segments. The findings suggest that the behavior of a thermal transistor will depend critically on the properties of the interface and the system size.
Resumo:
We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.
Resumo:
Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.
Resumo:
Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy.
Resumo:
The double neutron-proton differential transverse flow taken from two reaction systems using different isotopes of the same element is studied at incident beam energies of 400 and 800 MeV/nucleon within the framework of an isospin- and momentum-dependent hadronic transport model IBUU04. The double differential flow is found to retain about the same sensitivity to the density dependence of the nuclear symmetry energy as the single differential flow in the more neutron-rich reaction. Because the double differential flow reduces significantly both the systematic errors and the influence of the Coulomb force, it is thus more effective probe for the high-density behavior of the nuclear symmetry energy.
Resumo:
Using the isopin- and momentum-dependant hadronic transport model IBUU04, the effect of symmetry energy on the pi(-)/pi(+) ratio are studied. Our investigations are based on the calculations of the Sn-132+Sn-124 semi-central collisions at beam energies of 400/ A MwV, 600/ A MeV and 800MeV. It is found that both the transverse momentum and kinetic energy distributions of the pi(-)/pi(+) ratio are rather sensitive to the symmetry energy, especially around the Colomb peaks. The position of the coulomb peak is shown to be nearly indrpendant of beam energy. The sesitivity of the pi(-)/pi(+) ratio to the symmetry ebergy decreases as the beam energy increases from 600/ A MeV to 800/ A MeV.