728 resultados para Cemented carbide.
Resumo:
April 1980.
Resumo:
K-25 Laboratories, Carbide and Carbon Chemicals Corporation; Formerly of Clinton Engineer Works--Tennessee Eastman Corporation.
Resumo:
"The Y-12 Plant of the Clinton Engineer Works was operated by the Tennessee Eastman Corporation under Contract No. W-7401-eng-23 from Januaury 1943 until May 4, 1947, at which time operations were taken over by Carbide and Carbon Chemicals Corporation for the U.S. Atomic Energy Commission under Contract No. W-7405-eng-26"--Page 2 of cover.
Resumo:
"This supplement updates TID-4043(rev.3) Index of conferences relating to nuclear science, July 1976, by indexing conferences included in Nuclear science abstracts, volume 20 (1966) and 21 (1967).".
Resumo:
Uranium oxide has been reduced by carbon under vacuum at 2250°C, to yield a product consisting of dendritic uranium carbide in a matrix of uranium.
Resumo:
Uranium oxide has been reduced by carbon under vacuum at 2250°C, to yield a product consisting of dendritic uranium carbide in a matrix of uranium.
Resumo:
On cover: AEC research and development report.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Manganese nodules occurring within marine sediments of presumably Upper Miocene-Lower Pliocene age from cores obtained by the Argentine oceanographic vessel ARA Islas Orcadas in 1977 on the Malvinas (Falkland) Plateau and neighbouring Scotia Sea were studied with the aim of comparing them with other fossil nodules found on the mainland of Argentina that were also ascribed to the marine environment. After optical mineralogical, chemical, X-ray and trace element analysis, the studied "nodules" proved to be actually wacke clasts cemented by manganese oxides with a high Fe/Mn ratio corresponding to a continental environment. The studied "nodules" thus differ from the Argentine mainland nodules and are supposed to have been transported from continental environments and then deposited in the marine realms. The wacke clasts became then nuclei for the deposition of the marine manganese oxides of the coatings. The proportion of trace elements, which is high, suggests the growth of the nodules in the marine environment.
Resumo:
The role of the resin type on the sintering of maraging steel with boron additions has been investigated. Two different resins were added to the steel mixture and their subsequent debinding was evaluated and sintering responses compared with that of a resin-free alloy. The two resins used, nylon and a mixture of phenolic resin and synthetic wax, possessed different debinding behaviour, with the latter causing significant carbon contamination of the parts. This caused the formation of a Ti-Mo carbide, depleting the matrix of these elements. Consequently, the microstructure consisted of the equilibrium Fe-Fe2B eutectic, as well as a Mo-rich boride. The liquid phase also appeared to contain significant amounts of carbon, which lowered the temperature at which the liquid formed, resulting in high density occurring at a much lower temperature. When nylon was used as the binder, a similar sintering response to the resin-free alloy was observed. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Three high chromium white cast irons were examined in the as-cast state to determine the effect of the carbon content on the fracture toughness. The plane strain fracture toughness K-Ic and the fracture strength were measured for each alloy. X-ray mapping was used to identify the phases on the fracture surfaces. Scanning electron fractography and optical microscopy were used to determine the volume fraction of each phase on the fracture surfaces. It was found that most fracture occurred in the eutectic carbides, but that for the alloys with a reduced volume fraction of eutectic carbides, a small amount of crack propagation occurred in the austenitic dendrites. This change in crack path correlated with an increase in fracture toughness. The Ritchie-Knott-Rice model of brittle fracture was applied. It was found to sensibly predict the critical length for fracture for each alloy. Deep etching was employed to examine the distribution of eutectic carbides. It was found that the eutectic carbides formed a continuous network in each case. (C) 2004 Kluwer Academic Publishers.
Resumo:
The aim of this in vitro study was to evaluate the fracture load and marginal accuracy of crowns made from a shrinkage-free ZrSiO4 ceramic cemented with glass-ionomer or composite cement after chewing simulation. Thirty-two human mandibular molars were randomly divided into two groups. All teeth were prepared for and restored with shrinkage-free ZrSiO4 ceramic crowns (Everest HPC (R), KaVo). The crowns of group A (N = 16) were luted to the teeth using KetacCem (R) and group B (N = 16) were adhesively cemented using Panavia (R) 21EX. Measurements of the marginal accuracy before and after cementation were made using replicas and an image analysis system. All specimens were exposed to 1.2 million cycles of thermo-mechanical fatigue in a chewing simulator. Surviving specimens were subsequently loaded until fracture in a static testing device. Fracture loads (N) were recorded. All specimens survived chewing simulation. The mean fracture loads (+/- s.d.) were Group A, 1622 N (+/- 433); group B, 1957 N (+/- 806). There was no significant difference between the two groups (P > 0.05). The marginal gap values before cementation were (mean +/- s.d.): Group A, 32.7 mu m (+/- 6.8); group B, 33.0 mu m (+/- 6.7).The mean marginal gap values after cementation were (+/- s.d.): Group A, 44.6 mu m (+/- 6.7); group B, 46.6 mu m (+/- 7.7). The marginal openings were significantly higher after cementation for both groups (P < 0.05). All test groups demonstrated fracture load and marginal accuracy values within the range of clinical acceptability.
Resumo:
The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.