945 resultados para Catalyzed Coupling Reactions
Resumo:
This manuscript describes the first example of silver ion complex of a dendritic tetranitrile ligand catalyzed one-pot three component Mannich reaction and 1,5-benzodiazepine synthesis. The catalyst can be separated from the products by a change in the solvent. The catalyst is reusable.
Resumo:
This thesis deals with the synthesis and charcterisation of some supported transition metal complexes and their catalytic properties. Two industrially important reactions were carried out: i) cyclohexanol oxidation and ii) hydrodesulphurization of diesel. Thesis is divided into nine chapters. An overview of the heterogenised homogeneous systems is given in Chapter 1. Chapter 2 deals with the materials and methods used for the preparation and characterisation. Details regarding the synthesis and characterisation of zeolite encapsulated transition metal complexes are given in Chapter 3 to Chapter 7. In Chapter 8, the results of catalytic activity studies of the cyclohexanol oxidation using the zeolite encapsulated complexes are presented. Details of preparation of hydrodesulphurization catalysts through the molecular designed dispersion method, their characterization and catalytic activity studies are presented in Chapter 9. References are given at the end of the thesis.
Studies on some supported transition metal complex and metal oxide catalysts for oxidation reactions
Resumo:
Zeolite encapsulated transition metal complexes have received wide attention as an effective heterogenized system that combines the tremendous activity of the metal complexes and the attractive features of the zeolite structure. Zeolite encapsulated complexes offer a bright future for attempts to replace homogeneous systems retaining its catalytic activity and minimizing the technical problems. especially for the partial oxidation of organic compounds. Studies on some zeolite encapsulated transition metal complexes are presented in this thesis. The ligands selected are technically important in a bio-mimetic or structural perspective. Attempts have been made in this study to investigate the composition, structure and stability of encapsulated complexes using available techniques. The catalytic activity of encapsulated complexes was evaluated for the oxidation of some organic compounds. The recycling ability of the catalyst as a result of the encapsulation was also studied.Our studies on Cu-Cr/Al2O3, a typical metal oxide catalyst. illustrate the use of design techniques to modify the properties of such conventional catalysts. The catalytic activity of this catalyst for the oxidation of carbon monoxide was measured. The effect of additives like Ce02 or Ti02 on the activity and stability of this system was also investigated. The additive is potent to improve the activity and stability ofthe catalyst so as to be more effective in commercial usage.
Resumo:
In this thesis an attempt has been made to compare the catalytic activity of some medium and large pore zeolites in a few alkylation and acylation reactions. The work reported in the present study is basically centered around the following zeolites namely, ZSM-5, mordenite, zeolite Y and beta. The major reactions carried out were benzoylation of o-xylene, propionylation of toluene and anisole and benzylation of 0xylene.The programme involves the synthesis, modifications and characterization of the zeolite catalysts by various methods. The influence of various parameters such as non-framework cations, Si/AI ratio of zeolites, temperature of the reaction, catalyst concentration, molar ratio of the reactants and recycling of the catalysts were also examined upon the conversion of reactants and the formation of the desired products in the alkylation / acylation reactions.The general conclusions drawn by us from the results obtained are summarized in the last chapter of the thesis. Zeolite beta offers interesting opportunities as a potential catalyst in alkylation reactions and the area of catalysis by medium and large pore zeolites is very fascinating and there is plenty of scope for further research in this field. Moreover, zeolite based catalysts are effective in meeting current industrial processing and more stringent environment pollution limits.
Resumo:
Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.
Resumo:
The performance of circular, rectangular and cross irises for the coupling of microwave power to rectangular waveguide cavity resonators is discussed. For the measurement of complex permittivity of materials using cavity perturbation techniques, rectangular cavities with high Q-factors are required. Compared to the conventional rectangular and circular irises, the cross Iris coupling structure provides very high loaded quality factor for all the resonant frequencies. The proposes cross iris coupling structure enhances the accuracy of complex permittivity measurements.
Resumo:
The selective oxidation of alkylaromatics is one of the main processes since the reaction products are important as intermediates in numerous industrial organic chemicals. Side-chain oxidation of alkyl aromatic compounds catalyzed by heterogeneous catalysts using cleaner peroxide oxidants is an especially attractive goal since classical synthetic laboratory procedures preferably use permanganate or acid dichromate as stoichiometric oxidants. In spite of many studies, there are very few which use hydrogen peroxide as a source of oxygen in the C-H activation of alkanes. Eflective utilization of ethylbenzene, available in the xylene stream of the petrochemical industry to more value added products is a promising one in chemical industry. The oxidation products of ethylbenzene are widely employed as intermediates in organic, steroid and resin synthesis.
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements