993 resultados para Castor oil polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to evaluate the feasibility of preparing nanocapsules and nanoemulsions using tea tree oil as oily phase aiming to protect its volatilization. The nanostructures presented nanometric mean size (160-220 nm) with a polydispersity index below 0.25 and negative zeta potential. The pH values were 6.43 ± 0.37 and 5.98 ± 0.00 for nanoemulsions and nanocapsules, respectively. The oil content after preparation was 96%. The inclusion of tea tree oil in nanocapsules showed higher protection against volatilization. The analysis of mean size and polydispersity index of formulations presented no significant alteration during the storage time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic antioxidants are an alternative to prevent or retard the degradation of biofuels made from vegetable oils. In this study, it was evaluated the oxidative stability of B100 soybean oil biodiesel, in the presence of tercbutylhydroquinone (TBHQ). The results showed that the induction period, that precedes the seeding process, was delayed in the presence of the antioxidant. Moreover, the obtained results suggest that the B100 biodiesel containing TBHQ can present a storage time at 25 ºC, three times longer than the estimated time for the pure B100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the chemical characterization of Eremanthusgoyzensis essential oil and its toxic effect over Brevipalpus phoenicis. The essential oil displayed a major composition of sesquiterpenes (61.87%) including trans-caryophillene (26.81%) and germacrene-D (13.31%). The fumigation test indicated a promising bioactivity over adult B. phoenicis individuals at 24 h (2.03 µL/L of air) and 48 h (1.08 µL/L of air) of exposition. A brief discussion of essential oils composition and their singular role on the toxic effect over B. phoenicis is provided here. Our results may contribute to a new and profitable use of a species of Brazilian flora on agribusiness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to verify the ability of enzymatic crude extract from dormant castor bean seeds to yield concentrated fatty acids by hydrolysis of polyunsaturated vegetable oils such as corn and sunflower. The enzymatic extract exhibited higher activity towards corn oil, which was selected for further studies to determine optimum hydrolysis conditions by factorial design. Maximum hydrolysis percentage (≈84%) was reached at 60% wt. oil:buffer acetate 100 mM pH 4.5, 33 ºC and 5.0% wt. of crude extract after 70 min of reaction. These results suggest that the use of low-cost lipase from castor bean seeds has potential for oil hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tapirira guianensis (Anacardiaceae) is used in traditional medicine and is important for the recovery of degraded areas and riparian forests because the T. guianensis fruits are highly consumed by wildlife. Volatile components from dried leaves and branches of five individual plants of T. guianensis were collected in two sandbank forests of the State of Pará (Extractive Reserve Maracanã and Area of Environmental Protection Algodoal/Maiandeua), extracted by hydrodistillation using a Clevenger-type apparatus, and analyzed by GC/MS. The ten oils obtained are comprised mostly of sesquiterpene hydrocarbons (58.49 to 100%), with (E)-caryophyllene, β-selinene, α-selinene, β-sesquiphellandrene, and α-zingiberene being the most prominent. The results of the oil compositions were processed by Hierarchical Component Analysis (HCA) allowing the establishment of three groups of essential oils for T. guianensis differentiated by the content of β-selinene/α-selinene (Type I), (E)-caryophyllene (Type II), and β-sesquiphellandrene/α-zingiberene (Type III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microencapsulation of palm oil may be a mechanism for protecting and promoting the controlled release of its bioactive compounds. To optimize the microencapsulation process, it is necessary to accurately quantify the palm oil present both external and internal to the microcapsules. In this study, we developed and validated a spectrophotometric method to determine the microencapsulation efficiency of palm oil by complex coacervation. We used gelatin and gum arabic (1:1) as wall material in a 5% concentration (w/v) and palm oil in the same concentration. The coacervates were obtained at pH 4.0 ± 0.01, decanted for 24 h, frozen (−40 ºC), and lyophilized for 72 h. Morphological analyzes were then performed. We standardized the extraction of the external palm oil through five successive washes with an organic solvent. We then explored the best method for rupturing the microcapsules. After successive extractions with hexane, we determined the amount of palm oil contained in the microcapsules using a spectrophotometer. The proposed method was shown to be of low cost, fast, and easy to implement. In addition, in the validation step, we confirmed the method to be safe and reliable, as it proved to be specific, accurate, precise, and robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential oil extracted from mustard (Brassica rapa) seeds was evaluated for its effect on suppression of Rhizoctonia solani growth in vitro, and in field soils, for reducing saprophytic substrate colonization and seedling damping off and blight using snap beans as indicator plant, the in vitro growth was completely inhibited at a concentration of 50 mul/l. The saprophytic substrate colonization in soils 24 h after treatment was drastically reduced to 45% at 150 mul/kg soil concentration, in contrast to 100% colonization at concentrations of 0, 50, or 75 mul/kg. This recovery rate gradually declined to 6% and 60%, respectively, in nine days. A control of pre and post-emergence seedling damping off and blight in common beans (Phaseolus vulgaris), without any apparent phytotoxic effect was achieved by irrigating R. solani infested soils with water containing the emulsified essential oil to provide 150 mul/l soil volume ten days prior to planting, gave over 95%. The effect of the mustard essential oil was not influenced by the physical soil texture, and it appears to be a good substitute for methyl bromide fumigation in nurseries for seedling production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.