845 resultados para Cascading appearance-based features
Resumo:
Land conflicts in Rwanda have attracted particular attention because they have both environmental and political causes. This paper attempts to shed light on the nature of land conflicts in present-day Rwanda based on popular justice records and interviews collected in two rural areas. From the analyses of these data, two types of land confl ict can be distinguished. The first type consists of those among family members. Given that land is the most important asset for ordinary rural households, its inheritance often brings about conflicts between right-holders. Those of the second type are triggered by political change. Impacts of the two national-level violent conflicts in Rwanda, the “social revolution” just before independence and the civil war in the 1990s, are of tremendous significance in this context. The military victory of the former rebels in 1994 caused a massive return of Tutsi refugees, who were officially permitted to acquire land from the original inhabitants. Although no serious protestation against this policy has occurred thus far, it has produced various land conflicts. Dealing with potential grievances among original inhabitants is an important challenge for the present government.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
Ozone (O3) phytototoxicity has been reported on a wide range of plantspecies, inducing the appearance of specific foliar injury or increasing leaf senescence. No information regarding the sensitivity of plantspecies from dehesa Mediterranean grasslands has been provided in spite of their great biological diversity. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of 22 representative therophytes of these ecosystems based on the appearance and extent of foliar injury. A distinction was made between specific O3injury and non-specific discolorations. Three O3 treatments (charcoal-filtered air, non-filtered air and non-filtered air supplemented with 40 nl l−1 O3 during 5 days per week) and three OTCs per treatment were used. The Papilionaceae species were more sensitive to O3 than the Poaceae species involved in the experiment since ambient levels induced foliar symptoms in 67% and 27%, respectively, of both plant families. An O3-sensitivity ranking of the species involved in the assessment is provided, which could be useful for bioindication programmes in Mediterranean areas. The assessed Trifoliumspecies were particularly sensitive since foliar symptoms were apparent in association with O3 accumulated exposures well below the current critical level for the prevention of this kind of effect. The exposure indices involving lower cut-off values (i.e. 30 nl l−1) were best related with the extent of O3-induced injury on these species.
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
We investigated the atomic surface properties of differently prepared silicon and germanium (100) surfaces during metal-organic vapour phase epitaxy/chemical vapour deposition (MOVPE/MOCVD), in particular the impact of the MOVPE ambient, and applied reflectance anisotropy/difference spectroscopy (RAS/RDS) in our MOVPE reactor to in-situ watch and control the preparation on the atomic length scale for subsequent III-V-nucleation. The technological interest in the predominant opto-electronic properties of III-V-compounds drives the research for their heteroepitaxial integration on more abundant and cheaper standard substrates such as Si(100) or Ge(100). In these cases, a general task must be accomplished successfully, i.e. the growth of polar materials on non-polar substrates and, beyond that, very specific variations such as the individual interface formation and the atomic step structure, have to be controlled. Above all, the method of choice to grow industrial relevant high-performance device structures is MOVPE, not normally compatible with surface and interface sensitive characterization tools, which are commonly based on ultrahigh vacuum (UHV) ambients. A dedicated sample transfer system from MOVPE environment to UHV enabled us to benchmark the optical in-situ spectra with results from various surfaces science instruments without considering disruptive contaminants. X-ray photoelectron spectroscopy (XPS) provided direct observation of different terminations such as arsenic and phosphorous and verified oxide removal under various specific process parameters. Absorption lines in Fourier-transform infrared (FTIR) spectra were used to identify specific stretch modes of coupled hydrides and the polarization dependence of the anti-symmetric stretch modes distinguished different dimer orientations. Scanning tunnelling microscopy (STM) studied the atomic arrangement of dimers and steps and tip-induced H-desorption proved the saturation of dangling bonds after preparati- n. In-situ RAS was employed to display details transiently such as the presence of H on the surface at lower temperatures (T <; 800°C) and the absence of Si-H bonds at elevated annealing temperature and also surface terminations. Ge buffer growth by the use of GeH4 enables the preparation of smooth surfaces and leads to a more pronounced amplitude of the features in the spectra which indicates improvements of the surface quality.
Resumo:
The time delay of arrival (TDOA) between multiple microphones has been used since 2006 as a source of information (localization) to complement the spectral features for speaker diarization. In this paper, we propose a new localization feature, the intensity channel contribution (ICC) based on the relative energy of the signal arriving at each channel compared to the sum of the energy of all the channels. We have demonstrated that by joining the ICC features and the TDOA features, the robustness of the localization features is improved and that the diarization error rate (DER) of the complete system (using localization and spectral features) has been reduced. By using this new localization feature, we have been able to achieve a 5.2% DER relative improvement in our development data, a 3.6% DER relative improvement in the RT07 evaluation data and a 7.9% DER relative improvement in the last year's RT09 evaluation data.
Resumo:
Specialized search engines such as PubMed, MedScape or Cochrane have increased dramatically the visibility of biomedical scientific results. These web-based tools allow physicians to access scientific papers instantly. However, this decisive improvement had not a proportional impact in clinical practice due to the lack of advanced search methods. Even queries highly specified for a concrete pathology frequently retrieve too many information, with publications related to patients treated by the physician beyond the scope of the results examined. In this work we present a new method to improve scientific article search using patient information. Two pathologies have been used within the project to retrieve relevant literature to patient data and to be integrated with other sources. Promising results suggest the suitability of the approach, highlighting publications dealing with patient features and facilitating literature search to physicians.
Resumo:
Human identification from a skull is a critical process in legal and forensic medicine, specially when no other means are available. Traditional clay-based methods attempt to generate the human face, in order to identify the corresponding person. However, these reconstructions lack of objectivity and consistence, since they depend on the practitioner. Current computerized techniques are based on facial models, which introduce undesired facial features when the final reconstruction is built. This paper presents an objective 3D craniofacial reconstruction technique, implemented in a graphic application, without using any facial template. The only information required by the software tool is the 3D image of the target skull and three parameters: age, gender and Body Mass Index (BMI) of the individual. Complexity is minimized, since the application database only consists of the anthropological information provided by soft tissue depth values in a set of points of the skull.
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for infrared imaging applications due to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high quality active region which requires a structural optimization of the nanostructures. With using GaAsSb capping layer, the optical properties, such as the PL intensity and its full width at half maximum (FWHM), of InAs QDs have been improved in the range between 1.15 and 1.5 m, because of the reduction of the compressive strain in QDs and the increment of QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponse spectra from GaAsSb-capped InAs-based QDIPs
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for many applications such as infrared imaging, remote sensing and gas sensing, thanks to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high-quality active region which requires an optimization of the nanostructure. By using GaAsSb capping layer, InAs QDs have improved their optical emission in the range between 1.15 and 1.3 m (at Sb composition of 14 %), due to a reduction of a compressive strain in QD and an increment of a QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponses at ~ 5 m from GaAsSb-capped InAs/GaAs QDIPs under normal light-incidence.
Resumo:
EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.
Resumo:
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.
Resumo:
Nowadays, PBL is considered a suitable methodology for engineering education. But making the most of this methodology requires some features, such as multidisciplinary, illstructured teamwork and autonomous research that sometimes are not easy to achieve. In fact, traditional university systems, including curricula, teaching methodologies, assessment and regulation, do not help the implementation of these features. Firstly, we look through the main differences found between a traditional system and the Aalborg model, considered a reference point in PBL. Then, this work is aimed at detecting the main obstacles that a standing traditional system presents to PBL implementation. A multifaceted PBL experience, covering three different disciplines, brings us to analyse these difficulties, order them according to its importance and decide which should be the first changes. Finally, we propose a straightforward introduction of generic competences in the curricula aimed at supporting the use of Problem-Based Project-Organized Learning
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Static analyses of object-oriented programs usually rely on intermediate representations that respect the original semantics while having a more uniform and basic syntax. Most of the work involving object-oriented languages and abstract interpretation usually omits the description of that language or just refers to the Control Flow Graph(CFG) it represents. However, this lack of formalization on one hand results in an absence of assurances regarding the correctness of the transformation and on the other it typically strongly couples the analysis to the source language. In this work we present a framework for analysis of object-oriented languages in which in a first phase we transform the input program into a representation based on Horn clauses. This allows on one hand proving the transformation correct attending to a simple condition and on the other being able to apply an existing analyzer for (constraint) logic programming to automatically derive a safe approximation of the semantics of the original program. The approach is flexible in the sense that the first phase decouples the analyzer from most languagedependent features, and correct because the set of Horn clauses returned by the transformation phase safely approximates the standard semantics of the input program. The resulting analysis is also reasonably scalable due to the use of mature, modular (C)LP-based analyzers. The overall approach allows us to report results for medium-sized programs.