974 resultados para Caryocorbula swiftiana, anterior-posterior shell length
Resumo:
Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.
Resumo:
Cytogenetic studies of choroid plexus tumors, particularly for atypical choroid plexus papillomas, have been rarely described. In the present report, the cytogenetic investigation of an atypical choroid plexus papilloma occurring at the posterior fossa of a 16-year-old male is described. Comparative genome hybridization analysis demonstrated gains of genetic material from almost all chromosomes. Chromosome losses involved 19p, regional losses at chromosome X and loss of chromosome Y. The presence of polyploid cells was confirmed by fluorescence in situ hybridization analysis with probes directed to centromeric regions. Furthermore, the microscopic analysis of cultures showed nuclear buds, nucleoplasmic bridges, and micronuclei in 23% of tumor cells suggesting the presence of complex chromosomal abnormalities. Previous cytogenetic studies on choroid plexus papillomas showed either normal, hypodiploid or hyperdiploid karyotypes. To the best of our knowledge, this is the first report of polyploidy in choroid plexus papilloma of intermediate malignancy grade. Although the mechanisms beneath such genome duplication remain to be elucidated, the observed abnormal nuclear shapes indicate constant restructuring of the tumor`s genome and deserves further investigation.
Resumo:
Objective Intrasubstance meniscal signal changes not reaching the articular surface on fast spin echo (FSE) sequences are considered to represent mucoid degeneration on MRI. The aim of this study was to evaluate the association of prevalent intrasubstance signal changes with incident tears of the medial meniscus detected on 3.0 T MRI over a 1-year period. Materials and methods A total of 161 women aged a parts per thousand yen40 years participated in a longitudinal 1-year observational study of knee osteoarthritis. MRI (3.0 T) was performed at baseline and 12-month follow-up. The anterior horn, body, and posterior horn of the medial meniscus were scored by two experienced musculoskeletal radiologists using the Boston-Leeds Osteoarthritis Knee Score (BLOKS) system. Four grades were used to describe the meniscal morphology: grade 0 (normal), grade 1 (intrasubstance signal changes not reaching the articular surface), grade 2 (single tears), and grade 3 (complex tears and maceration). Fisher`s exact test and the Cochran-Armitage trend test were performed to evaluate whether baseline intrasubstance signal changes (grade 1) predict incident meniscal tears/maceration (grades 2 and/or 3) in the same subregion of the medial meniscus, when compared to subregions without pathology as the reference group (grade 0). Results Medial meniscal intrasubstance signal changes at baseline did not predict tears at follow-up when evaluating the anterior and posterior horns (left-sided p-values 0.06 and 0.59, respectively). No incident tears were detected in the body. Conclusion We could not demonstrate an association between prevalent medial meniscal intrasubstance signal changes with incident tears over a 1-year period.
Resumo:
Objective: To investigate the association of different types of magnetic resonance imaging (MRI)-detected medial meniscal pathology with subregional cartilage loss in the medial tibiofemoral compartment. Methods: A total of 152 women aged >= 40 years, with and without knee osteoarthritis (OA) were included in a longitudinal 24-month observational study. Spoiled gradient recalled acquisitions at steady state (SPGR) and T2-weighted fat-suppressed MRI sequences were acquired. Medial meniscal status of the anterior horn (AH), body, and posterior horn (PH) was graded at baseline: 0 (normal), 1 (intrasubstance meniscal signal changes), 2 (single tears), and 3 (complex tears/maceration). Cartilage segmentation was performed at baseline and 24-month follow-up in various tibiofemoral subregions using computation software. Multiple linear regression models were applied for the analysis with cartilage loss as the outcome. In a first model, the results were adjusted for age and body mass index (BMI). In a second model, the results were adjusted for age, BMI and medial meniscal extrusion. Results: After adjusting for age, BMI, and medial meniscal extrusion, cartilage loss in the total medial tibia (MT) (0.04 mm, P=0.04) and the external medial tibia (eMT) (0.068 mm, P=0.04) increased significantly for compartments with grade 3 lesions. Cartilage loss in the total central medial femoral condyle (cMF) (0.071 mm, P=0.03) also increased significantly for compartments with grade 2 lesions. Cartilage loss at the eMT was significantly related to tears of the PH (0.074 mm; P=0.03). Cartilage loss was not significantly increased for compartments with grade 1 lesions. Conclusion: The protective function of the meniscus appears to be preserved in the presence of intrasubstance meniscal signal changes. Prevalent single tears and meniscal maceration were found to be associated with increased cartilage loss in the same compartment, especially at the PH. (C) 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behaviour elicited by physical restriction and Postural inversion, and is characterised by a profound and temporary state of akinesis. Our previous studies demonstrated that glutamatergic stimulation of the dorsomedial/dorsolateral Portion of periaqueductal gray matter (dPAG) decreases the duration of TI in guinea pigs (Cavia porcellus). Furthermore, evidence suggests that the anterior cingulate cortex (ACC) constitutes an important Source of glutamate for the dPAG. Hence, in the current study, we investigated the effects of microinjection of the excitatory amino acid (EAA) agonist DL-homocysteic acid (DLH) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 into the ACC on the duration of TI in guinea pigs. We also assessed the effect of the NMDA receptor antagonist (MK-801) into the dorsal periaqueductal gray matter (dPAG) prior to DLH microinjection into the ACC on the TI duration in the guinea pig. Our results demonstrated that DLH microinjections into the ACC decreased the duration of TI. This effect was blocked by previous MK-801 microinjections into the ACC or into the dPAG. The MK-801 microinjections alone did not influence TI duration. These results provide the new insight that EAAs in the ACC can decrease the duration of TI. The mechanism seems to be dependent on the NMDA receptors present in the ACC and in the dPAG. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Objective(s): We intend to verify if fetal volume and crown-rump length were different between singletons and twins in pregnancies aged from 7 to 10 weeks and to evaluate if fetal volume is more accurate to determine the gestational age than crown-rump length at this gestational age. Study design: From 52 days (7 weeks and 3 days) to 73 days (10 weeks and 3 days) weekly three-dimensional Ultrasonography was per-formed in 20 twin fetuses and 20 singletons. Crown-rump length and fetal volume using VOCAL were assessed in all examinations. The `true` gestational age was based on oocyte retrieval. Results: At the age of 52 days, the crown-rump length was 11.74 +/- 0.27 mm (mean +/- S.D.) and 11.48 +/- 0.22 mm (singletons and twins, respectively), while the fetal volume was 0.354 +/- 0.015 cm(3) and 0.324 +/- 0.012 cm(3). At the gestational age of 73 days, the crown-rump length was 36.19 +/- 0.90 mm and 35.87 +/- 0.54 mm and the fetal volume was 6.204 +/- 0.090 cm(3) and 6.083 +/- 0.081 cm(3). The total relative increase observed was much higher for fetal volume than for CRL: 1705 +/- 301% vs. 210 +/- 33% in singletons and 1827 +/- 305% vs. 214 +/- 25% in twins. The 95% limits of agreement (+/- 2.3 days vs. +/- 3.2 days, fetal volume vs. crown-rump length) and the intraclass correlation coefficients (0.989 vs. 0.978) between the ""true"" gestational age and that predicted by fetal volume were better than those predicted by crown-rump length. No significant difference was identified between singletons and twins for both fetal volume and crown-rump length. Conclusion(s): Twins and singletons had similar fetal volume and crown-rump length between the 7th and 10th week of gestational age. Additionally, fetal volume assessed by VOCAL was better than crown-rump length to estimate the gestational age at the evaluated period. However, the improvement was small and probably without clinical significance. Condensation: Fetal volume and crown-rump length were similar between singletons and twins. Fetal volume relative increase was higher and the predicted gestational age was better. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to compare the crown-rump length (CRL) and the fetal head and trunk (HT) volume between singletons and twins conceived after in vitro fertilization. Thirty pregnant patients submitted to embryo transfer were enrolled in this research. Ten conceived twins (20 dichorionic fetuses) while other 20 conceived singletons. The gestational age was calculated by adding 14 d to the number of days between the oocyte retrieval and the scheduled ultrasound. Three-dimensional ultrasound scans were performed weekly from 73 d (10 wk and 3 d) to 101 d (14 wk and 3 d) of gestational age. HT volume was assessed by VOCAL using 15 degrees step rotation on the manual mode. The measurement of CRL was performed by using the longitudinal plane of the fetus in the multiplanar view. The CRL and HT volume weekly relative increase were evaluated to compare the growth between singletons and twins. No significant difference was identified, in any analyzed week, when comparing the mean of CRL and HT volume between singletons and twins. Additionally, no significant difference between singletons and twins was noticed when comparing the weekly relative increase, both for CRL and HT volume. However, the weekly relative increase was significantly higher for HT volume than for CRL in every week studied for both singletons and twins. The total relative increase observed between 73 and 101 d was much higher for HT volume than for CRL: 679 +/- 39% versus 138 +/- 18% in singletons and 689 +/- 58% versus 139 +/- 21% in twins (HT volume and CRL, respectively), suggesting that HT volume could more accurately determine the gestational age.
Resumo:
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.