940 resultados para Carpal tunnel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.

Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.

The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.

In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.

Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the design, construction and performance of a high-pressure, xenon, gas time projection chamber (TPC) for the study of double beta decay in ^(136) Xe. The TPC when operating at 5 atm can accommodate 28 moles of 60% enriched ^(136) Xe. The TPC has operated as a detector at Caltech since 1986. It is capable of reconstructing a charged particle trajectory and can easily distinguish between different kinds of charged particles. A gas purification and xenon gas recovery system were developed. The electronics for the 338 channels of readout was developed along with a data acquistion system. Currently, the detector is being prepared at the University of Neuchatel for installation in the low background laboratory situated in the St. Gotthard tunnel, Switzerland. In one year of runtime the detector should be sensitive to a 0ν lifetime of the order of 10^(24) y, which corresponds to a neutrino mass in the range 0.3 to 3.3 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With novel application of optical techniques, the slender-body hypervelocity boundary-layer instability is characterized in the previously unexplored regime where thermo-chemical effects are important. Narrowband disturbances (500-3000~kHz) are measured in boundary layers with edge velocities of up to 5~km/s at two points along the generator of a 5 degree half angle cone. Experimental amplification factor spectra are presented. Linear stability and PSE analysis is performed, with fair prediction of the frequency content of the disturbances; however, the analysis over-predicts the amplification of disturbances. The results of this work have two key implications: 1) the acoustic instability is present and may be studied in a large-scale hypervelocity reflected-shock tunnel, and 2) the new data set provides a new basis on which the instability can be studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.

Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.

The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.

Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.

Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The warm plasma resonance cone structure of the quasistatic field produced by a gap source in a bounded magnetized slab plasma is determined theoretically. This is initially determined for a homogeneous or mildly inhomogeneous plasma with source frequency lying between the lower hybrid frequency and the plasma frequency. It is then extended to the complicated case of an inhomogeneous plasma with two internal lower hybrid layers present, which is of interest to radio frequency heating of plasmas.

In the first case, the potential is obtained as a sum of multiply reflected warm plasma resonance cones, each of which has a similar structure, but a different size, amplitude, and position. An important interference between nearby multiply-reflected resonance cones is found. The cones are seen to spread out as they move away from the source, so that this interference increases and the individual resonance cones become obscured far away from the source.

In the second case, the potential is found to be expressible as a sum of multiply-reflected, multiply-tunnelled, and mode converted resonance cones, each of which has a unique but similar structure. The effects of both collisional and collisionless damping are included and their effects on the decay of the cone structure studied. Various properties of the cones such as how they move into and out of the hybrid layers, through the evanescent region, and transform at the hybrid layers are determined. It is found that cones can tunnel through the evanescent layer if the layer is thin, and the effect of the thin evanescent layer is to subdue the secondary maxima of cone relative to the main peak, while slightly broadening the main peak and shifting it closer to the cold plasma cone line.

Energy theorems for quasistatic fields are developed and applied to determine the power flow and absorption along the individual cones. This reveals the points of concentration of the flow and the various absorption mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation demonstrates an application of a flexible wall nozzle for testing in a supersonic wind tunnel. It is conservative to say that the versatility of this nozzle is such that it warrants the expenditure of time to carefully engineer a nozzle and incorporate it in the wind tunnel as a permanent part of the system. The gradients in the test section were kept within one percent of the calibrated Mach number, however, the gradients occurring over the bodies tested were only ± 0.2 percent in Mach number.

The conditions existing on a finite cone with a vertex angle of 75° were investigated by considering the pressure distribution on the cone and the shape of the shock wave. The pressure distribution on the surface of the 75° cone when based on upstream conditions does not show any discontinuities at the theoretical attachment Mach number.

Both the angle of the shock wave and the pressure distribution of the 75° cone are in very close agreement with the theoretical values given in the Kopal report, (Ref. 3).

The location of the intersection of the sonic line with the surface of the cone and with the shock wave are given for the cone. The blocking characteristics of the GALCIT supersonic wind tunnel were investigated with a series of 60° cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.

Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.

Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.

Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.

Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho visa determinar a contribuição das emissões evaporativas provenientes dos veículos leves de passageiro, para a degradação da qualidade do ar atmosférico. O objetivo principal é avaliar as concentrações compostos monoaromáticos voláteis Benzeno, Tolueno, Etilbenzeno e Xilenos (BTEX) em ambientes confinados, sendo este realizado em um local que caracterize a realidade da frota veicular da Região metropolitana do Rio de Janeiro. As amostras foram coletadas em um estacionamento subterrâneo de um Shopping Center da zona norte do Rio de Janeiro, através do sistema de amostragem ativa, utilizando cartucho de carvão ativo como adsorvente. As amostras foram extraídas com solvente orgânico e analisadas posteriormente por Cromatografia gasosa acoplada à espectrometria de massas (CGEM). As médias dos resultados obtidos foram 52,7 g.m-3 para o benzeno, 203,6 g.m-3 para o tolueno, 44,6 g.m-3 para o etilbenzeno, 115,7 g.m-3 para os xilenos, sendo o tolueno o composto encontrado em maior abundância. Esses resultados foram comparados com resultados encontrados na literatura de emissões veiculares em ambientes confinados como garagens e túneis. Foi investigada a correlação com as emissões do veículo em movimento, obtidas através de estudos previamente realizados em um túnel de grande circulação e as emissões obtidas no estacionamento subterrâneo. Através desses dados ficou demonstrada diferença das fontes de emissão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]En este trabajo se ha diseñado un producto secundario con una fijación extra en formato trocar para operaciones percutáneas dirigidas por sistemas de imagen. Este instrumento que hasta ahora era inexistente en el mercado actuará como túnel, permitiendo la introducción de agujas de radiofrecuencia y biopsia por su interior. La particularidad de este producto es el diseño del sistema de sujeción, que garantizará al cirujano que el punto a intervenir sea el mismo durante toda la operación. Este diseño se ha realizado después de hacer un estudio en profundidad de las alternativas existentes de los sistemas de fijación en el campo de la medicina oncológica y el sector industrial. Además se detalla el material de cada elemento del producto en base a la norma sanitaria correspondiente, también se explica el proceso más adecuado para la fabricación de dichos elementos y por último se realiza un cálculo sencillo del pandeo de la aguja, que garantice un uso óptimo del instrumento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O potencial eólico do Brasil, de vento firme e com viabilidade econômica de aproveitamento, é de 143 GW. Isso equivale ao dobro de toda a capacidade da geração já instalada no país. No Brasil, a energia eólica tem uma sazonalidade complementar à energia hidrelétrica, porque os períodos de melhor condição de vento coincidem com os de menor capacidade dos reservatórios. O projeto desenvolvido neste trabalho nasceu de uma chamada pública do FINEP, e sob os auspícios do recém criado CEPER. Ao projeto foi incorporado um caráter investigativo, de contribuição científica original, resultando em um produto de tecnologia inovadora para aerogeradores de baixa potência. Dentre os objetivos do projeto, destacamos a avaliação experimental de turbinas eólicas de 5000 W de potência. Mais especificamente, dentro do objetivo geral deste projeto estão incluídas análise estrutural, análise aerodinâmica e análise de viabilidade de novos materiais a serem empregados. Para cada uma das diferentes áreas de conhecimento que compõem o projeto, será adotada a metodologia mais adequada. Para a Análise aerodinâmica foi realizada uma simulação numérica preliminar seguida de ensaios experimentais em túnel de vento. A descrição dos procedimentos adotados é apresentada no Capítulo 3. O Capítulo 4 é dedicado aos testes elétricos. Nesta etapa, foi desenvolvido um banco de testes para obtenção das características específicas das máquinas-base, como curvas de potência, rendimento elétrico, análise e perdas mecânicas e elétricas, e aquecimento. Este capítulo termina com a análise crítica dos valores obtidos. Foram realizados testes de campo de todo o conjunto montado. Atualmente, o aerogerador de 5kW encontra-se em operação, instrumentado e equipado com sistema de aquisição de dados para consolidação dos testes de confiabilidade. Os testes de campo estão ocorrendo na cidade de Campos, RJ, e abrangeram as seguintes dimensões de análise; testes de eficiência para determinação da curva de potência, níveis de ruído e atuação de dispositivos de segurança. Os resultados esperados pelo projeto foram atingidos, consolidando o projeto de um aerogerador de 5000W.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mutagenicidade do material particulado é atribuída primeiramente aos hidrocarbonetos policíclicos aromáticos (HPA). Investigamos a atividade mutagênica do material particulado (MP2,5) em amostras coletadas em três pontos da cidade do Rio de Janeiro. As coletas foram realizadas com auxílio de um amostrador de grande volume na Avenida Brasil, no campus da Universidade do Estado do Rio de Janeiro e no Túnel Rebouças em filtros de fibra de vidro. Metade de cada filtro foi submetido à extração por sonicação com o solvente diclorometano. Seis HPA foram identificados e quantificados por cromatografia gasosa com espectrometria de massa (GC/MS). Após a análise química as concentrações dos HPA obtidos foram correlacionados ao fatores físicos, além de ser realizado avaliação de risco para cada HPA estudado. Linhagens de Salmonella typhimurium (TA98 e derivadas TA98/1.8-DNP6, YG1021 e YG1024) foram utilizadas no ensaio de mutagenicidade e tratadas (10-50 g/placa) com extrato orgânico na presença e na ausência de metabolização exógena. Células de raiz de cebola foram tratadas com extratos orgânicos nas concentrações (5-25g/mL). A alta umidade encontrada no Túnel Rebouças pode ter influenciado na deposição de cinco dos seis HPA estudados em material particulado. Além disso, em diferentes condições de tráfego, motoristas de ônibus que cruzam a Avenida Brasil e o Rebouças túnel estão expostos ao risco induzidos por HPA na ordem de 10-6. Mutagenicidade foi detectada tanto na presença quanto na ausência de metabolização, para as linhagens YG1021 e YG1024 nos três pontos, sugerindo a presença de nitro e amino derivados de HPA. As amostras do Túnel Rebouças apresentaram os maiores valores para rev/g e rev/m3. Estes resultados podem estar relacionados ao longo trajeto e a restrita ventilação. Efeito citotóxico foi detectado pelo ensaio Allium cepa nos três pontos de monitoramento. Além disso os extratos orgânicos provenientes das coletas da Avenida Brasil, UERJ e do Túnel Rebouças induziram efeito clastogênico em células de raiz de Allium cepa