1000 resultados para Carbonate sediments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon and oxygen isotopic compositions of authigenic carbonate nodules or layers reflect the diagenetic conditions at the time of nodule growth. The shallowest samples of carbonate nodules and dissolved inorganic carbon of pore water samples beneath the sulfate reduction zone (0-160 meters below seafloor [mbsf]) at Site 1165 have extremely negative d13C values (-50 per mil and -62 per mil, respectively). These negative d13C values indicate nodule formation in association with anaerobic methane oxidation coupled with sulfate reduction. The 34S of residual sulfate at Site 1165 shows only minor 34S enrichment (+6 per mil), even with complete sulfate reduction. This small degree of apparent 34S enrichment is due to extreme "open-system" sulfate reduction, with sulfate abundantly resupplied by diffusion from overlying seawater. Ten calcite nodules from Site 1165 contain minor quartz and feldspar and have d13C values ranging from -49.7 per mil to -8.2 per mil. The nodules with the most negative d13C values currently are at depths of 273 to 350 mbsf and must have precipitated from carbonate largely derived from subsurface anaerobic methane oxidation. The processes of sulfate reduction coupled with methane oxidation in sediments of Hole 1165B are indicated by characteristic concentration and isotopic (d34S and d13C) profiles of dissolved sulfate and bicarbonate. Three siderite nodules from Site 1166 contain feldspar and mica and one has significant carbonate-apatite. The siderite has d13C values ranging from -15.3 per mil to -7.6 per mil. These siderite nodules probably represent early diagenetic carbonate precipitation during microbial methanogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal paleoceanographic objective of Ocean Drilling Program Leg 115 was to collect a suite of materials that would allow reconstruction of the dynamic features of the late Cenozoic carbonate system in the equatorial Indian Ocean. This goal was achieved with the recovery of sediments from a closely spaced depth transect (1541-4428 m) of five sites (Sites 707 through 711) from on and around the Mascarene Plateau that record the last 50 m.y. of pelagic deposition. More than 2200 measurements of carbonate content are combined here with a highly resolved bio- and magnetostratigraphy to produce the first detailed compilation of bulk, carbonate, and noncarbonate mass accumulation rates (MARs) from the Indian Ocean. These results allow us to recognize three major depositional intervals, each characterized by a distinct depth-dependent pattern of carbonate accumulation: (1) the Paleogene, a time of moderate accumulation rates (0.4-0.7 g/cm**2/1000 yr) and reduced between-site accumulation differences; (2) the early and middle Miocene, a period characterized by greatly reduced carbonate MARs (typically <0.2 g/cm**2/1000 yr) at all sites and a shallow carbonate compensation depth; and (3) the late Miocene to Holocene, a time span marked by the highest bulk and carbonate accumulation rates of the last 50 Ma (1.6-1.8 g/cm**2/1000 yr), and the first appearance of substantial contrasts in carbonate accumulation as a function of the water depth of the drill site. The fundamentally different character of the carbonate system during each of these intervals must represent a regional response to the complex evolution of late Cenozoic oceans and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rock-Eval pyrolysis of rock samples and the elemental analysis of kerogens show clear differences between Messinian black shales and Pliocene-Pleistocene sapropels recovered during ODP Leg 107. The Messinian black shales are characterized by a large variety of compositions which probably reflects a great diversity of depositional and diagenetic paleoenvironments. In contrast, the Pliocene-Pleistocene sapropels, occurring as discrete layers in nannofossil oozes barren of organic carbon, constitute a rather homogeneous group in terms of organic content. A considerable contribution of terrestrial organic matter in the sapropels could mean that an identical phenomenon of terrestrial input has been periodically reproduced in the basin. The maturity and the nature of the organic matter are discussed with respect to anomalous values recorded for Tmax parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling at Site 765 in the Argo Abyssal Plain sampled sediments and oceanic crust adjacent to the Australian margin. Some day, this site will be consumed in the Java Trench. An intensive analytical program was conducted to establish this site as a geochemical reference section forcrustal recycling calculations. About 150 sediment samples from Site 765 were analyzed for major and trace elements. Downhole trends in the sediment analyses agree well with trends in sediment mineralogy, as well as in Al and K logs. The primary signal in the geochemical variability is dilution of a detrital component by both biogenic silica and calcium carbonate. Although significant variations in the nonbiogenic component occur through time, its overall character is similar to nearby Canning Basin shales, which are typical of average post-Archean Australian shales (PAAS). The bulk composition of the hole is calculated using core descriptions to weight the analyses appropriately. However, a remarkably accurate estimate of the bulk composition of the hole can be made simply from PAAS and the average calcium carbonate and aluminum contents of the hole. Most elements can be estimated within 30% in this way. This means that estimating the bulk composition of other sections dominated by detrital and biogenic components may require little analytical effort: calcium carbonate contents, average Al contents, and average shale values can be taken from core descriptions, geochemical logs, and the literature, respectively. Some of the geochemical systematics developed at Site 765 can be extrapolated along the entire Sunda Trench. However, results are general, and Site 765 should serve as a useful reference for estimating the compositions of other continental margin sections approaching trenches around the world (e.g., outboard of the Lesser Antilles, Aegean, and Eolian arcs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this data report we present results from stable isotope measurements (d13C and d18O) on bulk sediment at several sites located on a transect along a subduction margin offshore Costa Rica (Ocean Drilling Program Sites 1039, 1040, and 1253). Comparison of stable isotope compositions (d13C and d18O) of the pelagic carbonates Subunit U3C between the reference sites (Site 1039 and 1253) and the underthrust section (Site 1040) reveals similar d13C values and minor differences in d18O values within four specific intervals. Isotope stratigraphy was then used to further constrain the shipboard age models based on bio- and magnetostratigraphy. The resulting age models are in agreement with those derived from biostratigraphy and confirm that the sedimentation rate of the lower Subunit 3C is roughly constant on the order of 50 m/m.y. This is in contrast with the postulated very high sedimentation rates at ~12.7 Ma and lower sedimentation rates (~18 m/m.y.) in the lower part of the section between 16 and 13 Ma, as suggested by shipboard magnetostratigraphic datums.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of mineralogical and geochemical investigations of post-Middle Jurassic deposits of the Atlantic Ocean are based on materials of the Deep Sea Drilling Project. Comparative characteristics of primary matter for ''black shales'' are given. Exhalative origin of heavy metal accumulation in near-axial sedimentary deeps of the Mid-Atlantic Ridge (23°N) are shown. History of post-Middle Jurassic sedimentation is considered on the base of clay mineral-, clastic component-, trace and rare- chemical element studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sediments of a core of.1.55 m length taken on the windward side of the Cross Bank, Florida Bay, are clearly subdivided into two portions, as shown by grain size analysis: silt-sized particles predominate in the relatively homogeneous lower two thirds of the core. This is succeeded abruptly by a thin layer of sand, containing fragments of Halimeda. They indicate a catastrophic event in the Florida Bay region, because Halimeda does not grow within Florida Bay. Above this layer, the amount of sand decreases at first and then continuously increases right to the present sediment-water-interface. The median and skewness increase simultaneously with the increase in the sand and granule portion. We assume that the changing grain size distribution was determined chiefly by the density of the marine flora: during the deposition of the lower two thirds of the core a dense grass cover acted as a sediment catcher for the fine-grained detritus washed out of the shallow basins of the Florida Bay, and simultaneously prohibited renewed reworking. Similar processes go on today on the surface of most mud banks of Florida Bay. The catastrophic event indicated by the sand layer probably changed the morphology of the bank to such an extent that the sampling point was shifted more to the windward side of the bank. This side is characterized by less dense plant growth. Therefore, less detritus could be caught and the material deposited could be reworked. The pronounced increase in skewness in the upper third of the core certainly indicates a strong washing out of the smaller-sized particles. The sediments are predominantly made up of carbonates, averagely 88.14 percent. The average CaCO3-content is 83.87 percent and the average MgCO3-content amounts to 4.27 percent. The chief carbonate mineral is aragonite making up 60.1 percent of the carbonate portion in the average, followed by high-magnesian calcite (33.8 percent) and calcite (6.1 percent). With increasing grain size the aragonite clearly increases at the cost of high-magnesian calcite in the upper third of the core. Chemically, this is shown by an increase of the CaCO3 : MgCO3-ratio. This increase is mainly caused by the more common occurrence of aragonitic fragments of mollusks in the coarse grain fractions. The bulk of the carbonates is made up of mollusks, foraminifera, ostracods, and - to a much lesser extent - of corals, worm-tubes, coccolithophorids, and calcareous algae, as shown by microscopic investigations. The total amount of the carbonate in the sediments is biogenic detritus with the possible exception of a very small amount of aragonite needles in the clay and fine silt fraction. The individual carbonate components of the gravel and sand fraction can be relatively easy identified as members of a particular animal or plant group. This becomes very difficult in the silt and clay fraction. Brownish aggregates are very common in the coarse and medium silt fraction. It was not always possible to clarify their origin (biogenic detritus, faecal pellets or carbonate particles cemented by carbonates or organic slime, etc.). Organic matter (plant fragments, rootlets), quartz, opal (siliceous sponge needles), and feldspar also occur in the sediments, besides carbonates. The lowermost part of the core has an age of 1365 +/- 90 years, as shown by 14C analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first series of Soviet standard reference samples of composition of ore materials and ocean pelagic sediments has been created. It includes iron-manganese nodules (SDO-4, SDO-5 and SDO-6), ore crusts (SDO-7) diatomaceous ooze (SDO-8), and deep-sea red clays (SDO-9). The standards are intended to serve as a metrologic basis for physical, physicochemical and chemical analyses of iron-manganese minerals and ocean sediments. The standards are provided with certified analyses of rock-forming components and certain trace elements. Certified characteristics are based on statistical analysis of data obtained from an inter-laboratory experiment involving analysis of the standard reference samples by a variety of methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagenesis and geochemical evolution of deep-sea sediments are controlled by the interaction between sediments and their associated pore waters. With increasing depth, the pore water of Hole 149 (DSDP) exhibits a strong depletion in Mg and a corresponding enrichment in Ca, while the alkalinity remains relatively constant. Dissolved SiO2 is nearly constant in the upper 100 m of sediment, but is highly enriched in the deepest pore waters. The pore waters exhibit a depletion in K with increasing depth, and O18/O16 pore water ratios also decrease. The sediment section has three zones of sedimentary regimes with increasing depth in the drill hole: an upper 100 m section of detrital clays, a middle section enriched in calc-akalic volcanics which have undergone submarine weathering to a smectite phase, and a lower section of siliceous ooze which still has a diagenetic smectite phase. The quartz-feldspar ratios and O18/O16 composition of the silicate phases are in agreement with these interpretations. The submarine weathering of volcanics to a smectite can account for the observed pore water gradients. Volcanics release Ca and Mg to the pore waters causing the alkalinity values to increase. Smectite is formed, depletes the pore waters in Mg and O18 and causes the alkalinity to decrease. The net reaction allows for the observed relationship between pore water Ca and Mg gradients with little net change in alkalinity. Given the abundance of volcanics in many deep-sea sediments, especially in lower sections which often form near ridge crests, the submarine formation of smectite may be an additional oceanic Mg sink which has not yet been fully considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At sites 390 and 392 (Deep Sea Drilling Project, Leg 44) on the Blake nose, thoroughly lithified Lower Cretaceous limestone more than 250 m thick is abruptly overlain by a condensed sequence of Barremian to Eocene pelagic carbonate ooze. The Lower Cretaceous sediments consist of three units: limestone with moldic porosity (base), oolitic limestone, and fenestral limestone. Subaerial diagenesis of the limestone section is recorded by (1) caverns with vertical dimensions of up to 10 m, (2) stalactitic intergranular cement, and (3) meniscus sediment (or cement). Compatible with these subaerial features are mud cracks, fenestral fabrics, intraclasts, and cryptalgal structures. Inasmuch as these shallow-water and tidal-flat deposits are now beneath 2,607 m of sea water (plus 99 m of younger sediments), they serve to dramatize the apparent degree of Barremian and later subsidence of this part of the Atlantic outer continental shelf. Porosity and permeability are high in vuggy samples, which are common in the skelmoldic limestone. Cementation has destroyed most of the extensive primary porosity of the two younger units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.