977 resultados para Cant coral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent reports of contamination of the Great Barrier Reef Marine Park by herbicides used in antifouling paints and in agriculture have caused concern over the possible effects on corals in nearshore areas. Pulse-Amplitude Modulated (PAM) chlorophyll fluorescence techniques were used to examine changes in the maximum effective quantum yield (ΔF/Fm′) of symbiotic dinoflagellates within the host tissues (in hospite) of the coral Seriatopora hystrix exposed to a number of Photosystem II (PSII) inhibiting herbicides in short-term toxicity tests. The concentration of herbicide required to reduce ΔF/Fm′ by 50% (median effective concentration [EC50]) differed by over 2 orders of magnitude: Irgarol 1051 (0.7 μg l-1) > ametryn (1.7 μg l-1) > diuron (2.3 μg l-1) > hexazinone (8.8 μg l -1) > atrazine (45 μg l-1) > simazine (150 μg l-1) > tebuthiuron (175 μg l-1) > ionynil (> 1 mg l-1). Similar absolute and relative toxicities were observed with colonies of the coral Acropora formosa (Irgarol 1051 EC50: 1.3 μg l-1, diuron EC50: 2.8 μg l-1), Time-course experiments indicated that ΔF/Fm′ was rapidly reduced (i.e. within minutes) in S. hystrix exposed to Irgarol 1051 and diuron. On return to fresh running seawater, ΔF/Fm′ recovered quickly in diuron-exposed corals (i.e. in minutes to hours), but slowly in corals exposed to Irgarol 1051 (i.e. hours to days). Time-course experiments indicated that the effects of diuron (3 μg l-1) on S. hystrix were inversely related to temperature over the range 20 to 30 °C, although initially the effects were less at the lower temperatures. Repeated exposure to pulses of Irgarol 1051 (daily 2 h exposure to 30 μg l -1 over 4 d) resulted in a 30% decrease in the density of symbiotic dinoflagellates in the tissues of S. hystrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is concern of the effects of Produced Formation Water (PFW, an effluent of the offshore oil and gas industry) on temperate/tropical marine organisms of the North West Shelf (NWS) of Australia. Little is known of the effects of PFW on tropical marine organisms, especially keystone species. Exposing the coral Plesiastrea versipora to a range (3-50% v/v) of PFW from Harriet A oil platform resulted in a reduction in photochemical efficiency of the symbiotic dinoflagellate algae in hospite ( in the coral tissues), assessed as a decrease in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) measured using chlorophyll fluorescence techniques. Significant differences were noted at PFW concentrations >12.5% ( v/v). In corals where F-v/F-m was significantly lowered by PFW exposure, significant discolouration of the tissues occurred in a subsequent 4-day observation period. The discolouration ( coral bleaching) was caused by a loss of the symbiotic dinoflagellates from the tissues, a known sublethal stress response of corals. PFW caused a significant decrease in F-v/F-m in symbiotic dinoflagellates freshly isolated from the coral Heliofungia actiniformis at 6.25% PFW, slightly lower than the studies in hospite. Corals exposed to lower PFW concentrations (range 0.1%-10% PFW v/v) for longer periods (8 days) showed no decrease in F-v/F-m, discolouration, loss of symbiotic dinoflagellates or changes in gross photosynthesis or respiration ( measured using O-2 exchange techniques). The study demonstrates minor toxicity of PFW from Harriet A oil platform to corals and their symbiotic algae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used.. including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (=Synbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most scleractinian coral species are widely distributed across the tropical and subtropical Indo-Pacific. However, the genetic connectivity between populations of corals separated by large distances (thousands of kilometers) is not well known. We analyzed variability in the nucleotide sequence of the internal transcribed spacer-1 (ITS-1) of the nuclear ribosomal gene unit in the ubiquitous coral Stylophora pistillata, across the western Pacific Ocean. Eight populations from Japan, Malaysia, and the northern and southern Great Barrier Reef (GBR) were studied. Phylogenetic analyses and analysis of molecular variance (AMOVA) clearly revealed that there is panmixia among these coral populations. AMOVA showed that ITS-1 sequence variability was greater within populations (78.37%) than among populations (12.06%). These patterns strongly suggest high levels of connectivity across the species' latitudinal distribution range in the western Pacific, as is seen in many marine invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef-building corals contain fluorescent pigments termed pocilloporins that function by regulating the light environment of coral and acting as a photoprotectant in excessive sunlight. These pocilloporins are related to the monomeric green fluorescent protein and the tetrameric DsRed fluorescent proteins, which have widespread use as biotechnological tools. An intensely blue-coloured pocilloporin, termed Rtms5, was expressed in Escherichia coli, purified and crystallized. Rtms5 was shown to be tetrameric, with deep blue crystals that diffract to 2.2 Angstrom resolution and belong to space group I4(1)22. The colour of this pocilloporin was observed to be sensitive to pH and a yellow (pH 3.5) and a red form (pH 4.5) of Rtms5 were also crystallized. These crystals belong to space group P4(2)22 and diffract to 2.4 Angstrom resolution or better.