966 resultados para California. Division of Mines and Geology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem is to calculate the attenuation of plane sound waves passing through a viscous, heat-conducting fluid containing small spherical inhomogeneities. The attenuation is calculated by evaluating the rate of increase of entropy caused by two irreversible processes: (1) the mechanical work done by the viscous stresses in the presence of velocity gradients, and (2) the flow of heat down the thermal gradients. The method is first applied to a homogeneous fluid with no spheres and shown to give the classical Stokes-Kirchhoff expressions. The method is then used to calculate the additional viscous and thermal attenuation when small spheres are present. The viscous attenuation agrees with Epstein's result obtained in 1941 for a non-heat-conducting fluid. The thermal attenuation is found to be similar in form to the viscous attenuation and, for gases, of comparable magnitude. The general results are applied to the case of water drops in air and air bubbles in water.

For water drops in air the viscous and thermal attenuations are camparable; the thermal losses occur almost entirely in the air, the thermal dissipation in the water being negligible. The theoretical values are compared with Knudsen's experimental data for fogs and found to agree in order of magnitude and dependence on frequency. For air bubbles in water the viscous losses are negligible and the calculated attenuation is almost completely due to thermal losses occurring in the air inside the bubbles, the thermal dissipation in the water being relatively small. (These results apply only to non-resonant bubbles whose radius changes but slightly during the acoustic cycle.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Trimethylsilylpotassium reacts with epoxides to give olefins with inversion of stereochemistry. The reaction appears to proceed via the potassium β-silyl alkoxide (2) formed from the S_N2 attack of the silyl anion on the epoxide. Subsequent stereospecific synelimination of 2 affords the olefin of inverted stereo-chemistry. The reaction is convenient and preparatively useful.

The byproduct of the reaction, potassium trimethylsilanolate (17), effectively cleaves hexamethyldisilane to yield trimethylsilylpotassium. Since the latter reagent is generated and reacted in situ with epoxides, the overall reaction can be carried out with less than one equivalent of potassium methoxide.

II. The reaction of aryl halides with trimethylsilyl anions in HMPT provides good yields of aryltrimethylsilanes, useful synthetic intermediates. The choice of metal cation is unimportant. Chlorides and bromides give high yields of silylated products, while iodides give lower yields, with correspondingly increased amounts of reduced products. Arylammonium and arylphosphonium salts also undergo the reaction.

We have permissive evidence for the reaction proceeding via both aryl radical and aryl anion intermediates.

III. Trimethylsilyl and trimethylstannyl methoxycarbene complexes of chromium and tungsten have been prepared. One of these, (CO)_5WC(OMe)SnMe_3, reacts with norbornene at 80° to afford a new olefin polymer. Efforts to effect the alpha-elimination of the nonmetallic carbene ligands have not yet been successful. Reactions of these carbene complexes with acetone have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 1 of this thesis is about the 24 November, 1987, Superstition Hills earthquakes. The Superstition Hills earthquakes occurred in the western Imperial Valley in southern California. The earthquakes took place on a conjugate fault system consisting of the northwest-striking right-lateral Superstition Hills fault and a previously unknown Elmore Ranch fault, a northeast-striking left-lateral structure defined by surface rupture and a lineation of hypocenters. The earthquake sequence consisted of foreshocks, the M_s 6.2 first main shock, and aftershocks on the Elmore Ranch fault followed by the M_s 6.6 second main shock and aftershocks on the Superstition Hills fault. There was dramatic surface rupture along the Superstition Hills fault in three segments: the northern segment, the southern segment, and the Wienert fault.

In Chapter 2, M_L≥4.0 earthquakes from 1945 to 1971 that have Caltech catalog locations near the 1987 sequence are relocated. It is found that none of the relocated earthquakes occur on the southern segment of the Superstition Hills fault and many occur at the intersection of the Superstition Hills and Elmore Ranch faults. Also, some other northeast-striking faults may have been active during that time.

Chapter 3 discusses the Superstition Hills earthquake sequence using data from the Caltech-U.S.G.S. southern California seismic array. The earthquakes are relocated and their distribution correlated to the type and arrangement of the basement rocks. The larger earthquakes occur only where continental crystalline basement rocks are present. The northern segment of the Superstition Hills fault has more aftershocks than the southern segment.

An inversion of long period teleseismic data of the second mainshock of the 1987 sequence, along the Superstition Hills fault, is done in Chapter 4. Most of the long period seismic energy seen teleseismically is radiated from the southern segment of the Superstition Hills fault. The fault dip is near vertical along the northern segment of the fault and steeply southwest dipping along the southern segment of the fault.

Chapter 5 is a field study of slip and afterslip measurements made along the Superstition Hills fault following the second mainshock. Slip and afterslip measurements were started only two hours after the earthquake. In some locations, afterslip more than doubled the coseismic slip. The northern and southern segments of the Superstition Hills fault differ in the proportion of coseismic and postseismic slip to the total slip.

The northern segment of the Superstition Hills fault had more aftershocks, more historic earthquakes, released less teleseismic energy, and had a smaller proportion of afterslip to total slip than the southern segment. The boundary between the two segments lies at a step in the basement that separates a deeper metasedimentary basement to the south from a shallower crystalline basement to the north.

Part 2 of the thesis deals with the three-dimensional velocity structure of southern California. In Chapter 7, an a priori three-dimensional crustal velocity model is constructed by partitioning southern California into geologic provinces, with each province having a consistent one-dimensional velocity structure. The one-dimensional velocity structures of each region were then assembled into a three-dimensional model. The three-dimension model was calibrated by forward modeling of explosion travel times.

In Chapter 8, the three-dimensional velocity model is used to locate earthquakes. For about 1000 earthquakes relocated in the Los Angeles basin, the three-dimensional model has a variance of the the travel time residuals 47 per cent less than the catalog locations found using a standard one-dimensional velocity model. Other than the 1987 Whittier earthquake sequence, little correspondence is seen between these earthquake locations and elements of a recent structural cross section of the Los Angeles basin. The Whittier sequence involved rupture of a north dipping thrust fault bounded on at least one side by a strike-slip fault. The 1988 Pasadena earthquake was deep left-lateral event on the Raymond fault. The 1989 Montebello earthquake was a thrust event on a structure similar to that on which the Whittier earthquake occurred. The 1989 Malibu earthquake was a thrust or oblique slip event adjacent to the 1979 Malibu earthquake.

At least two of the largest recent thrust earthquakes (San Fernando and Whittier) in the Los Angeles basin have had the extent of their thrust plane ruptures limited by strike-slip faults. This suggests that the buried thrust faults underlying the Los Angeles basin are segmented by strike-slip faults.

Earthquake and explosion travel times are inverted for the three-dimensional velocity structure of southern California in Chapter 9. The inversion reduced the variance of the travel time residuals by 47 per cent compared to the starting model, a reparameterized version of the forward model of Chapter 7. The Los Angeles basin is well resolved, with seismically slow sediments atop a crust of granitic velocities. Moho depth is between 26 and 32 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) Equation of State of Komatiite

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.

The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.

(2) Viscosity Measurement with Shock Waves

We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.

(3) Equation of State of Molybdenum at 1400°C

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction 32S(3He, α) 31S has been used to locate 42 levels in 31S. For 11 of the first 17 levels ℓn-values have been determined. The first 6 excited states of 31S have been studied by applying the particle-gamma correlation method of Litherland and Ferguson (their Method II) to the reaction 32S(3He, αγ) 31S. The resulting spins and parities are: EX, Jπ = 1.25 MeV, 3/2+; 2.23 MeV, 5/2+; 3.08 MeV, 1/2+; 3.29 MeV, 5/2+, 3/2+; 3.35 MeV, 7/2, 3/2; 3.44 MeV, 3/2+. Mixing and branching ratios have also been determined. The ground state Q-value for the reaction 32S(3He, α)31S has been measured to be 5.538 ± 0.006 MeV. Analysis of the spectra of the reaction 32S(3He, α)33Cl which were obtained as a by-product of the spectra of the reaction 32S(3He, α) 31S located levels in 33Cl at the following excitation energies: 0, 810 ± 9, (1978 ± 14), 2351 ± 9, 2686 ± 8, 2848 ± 9 (a known doublet), 2980 ± 9, and 4119 ± 10 keV. The 2.0 MeV level was only weakly populated, and to confirm its existence the reaction 36Ar(p, α)33Cl has been studied. In this reaction the 2.0 MeV level was strongly populated and the measured excitation energy was 1999 ± 20 keV. The experimental results for 31S and 33Cl are compared with their analogs and with nuclear model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.

Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decarboxylation and decarbonylation are important reactions in synthetic organic chemistry, transforming readily available carboxylic acids and their derivatives into various products through loss of carbon dioxide or carbon monoxide. In the past few decades, palladium-catalyzed decarboxylative and decarbonylative reactions experienced tremendous growth due to the excellent catalytic activity of palladium. Development of new reactions in this category for fine and commodity chemical synthesis continues to draw attention from the chemistry community.

The Stoltz laboratory has established a palladium-catalyzed enantioselective decarboxylative allylic alkylation of β-keto esters for the synthesis of α-quaternary ketones since 2005. Recently, we extended this chemistry to lactams due to the ubiquity and importance of nitrogen-containing heterocycles. A wide variety of α-quaternary and tetrasubstituted α-tertiary lactams were obtained in excellent yields and exceptional enantioselectivities using our palladium-catalyzed decarboxylative allylic alkylation chemistry. Enantioenriched α-quaternary carbonyl compounds are versatile building blocks that can be further elaborated to intercept synthetic intermediates en route to many classical natural products. Thus our chemistry enables catalytic asymmetric formal synthesis of these complex molecules.

In addition to fine chemicals, we became interested in commodity chemical synthesis using renewable feedstocks. In collaboration with the Grubbs group, we developed a palladium-catalyzed decarbonylative dehydration reaction that converts abundant and inexpensive fatty acids into value-added linear alpha olefins. The chemistry proceeds under relatively mild conditions, requires very low catalyst loading, tolerates a variety of functional groups, and is easily performed on a large scale. An additional advantage of this chemistry is that it provides access to expensive odd-numbered alpha olefins.

Finally, combining features of both projects, we applied a small-scale decarbonylative dehydration reaction to the synthesis of α-vinyl carbonyl compounds. Direct α-vinylation is challenging, and asymmetric vinylations are rare. Taking advantage of our decarbonylative dehydration chemistry, we were able to transform enantioenriched δ-oxocarboxylic acids into quaternary α-vinyl carbonyl compounds in good yields with complete retention of stereochemistry. Our explorations culminated in the catalytic enantioselective total synthesis of (–)-aspewentin B, a terpenoid natural product featuring a quaternary α-vinyl ketone. Both decarboxylative and decarbonylative chemistries found application in the late stage of the total synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep is a highly conserved behavioral state whose regulation is still unclear. In this thesis I initially briefly introduce the known sleep circuitry and regulation in vertebrates, and why zebrafish is seen as a good model to study sleep-regulation. I describe the existing two-process model of sleep regulation, which posits that the two processes C (circadian) and S (homeostatic) control timing of sleep-wake behavior. I then study the role melatonin plays in the circadian regulation of sleep using zebrafish. Firstly, we find that the absence of melatonin results in a reduction of sleep at night, establishing that endogenous melatonin is required for sleep at night. Secondly, melatonin mutants show a reduction in sleep in animals with no functional behavioral rhythms suggesting that melatonin does not require intact circadian rhythms for its effect on sleep. Thirdly, melatonin mutants do not exhibit any changes in circadian rhythms, suggesting that the circadian clock does not require melatonin for its function. Fourthly, we find that in the absence of melatonin, there is no rhythmic expression of sleep, suggesting that melatonin is the output molecule of process C. Lastly, we describe a connection between adenosine signaling (output molecules of process S), and melatonin. Following this we proceed to study the role adenosine signaling plays in sleep-wake behavior. We find that firstly, adenosine receptor A1 and A2 are involved in sleep- wake behavior in zebrafish, based on agonist/antagonist behavioral results. Secondly, we find that several brain regions such as PACAP cells in the rostral midbrain, GABAergic cells in the forebrain and hindbrain, Dopamine and serotonin cells in the caudal hypothalamus and sox2 cells lining the hindbrain ventricle are activated in response to the A1 antagonist and VMAT positive cells are activated in response to the A2A agonist, suggesting these areas are involved in adenosine signaling in zebrafish. Thirdly, we find that knocking out the zebrafish adenosine receptors has no effect on sleep architecture. Lastly, we find that while the A1 agonist phenotype requires the zfAdora1a receptor, the antagonist and the A2A agonist behavioral phenotypes are not mediated by the zfAdora1a, zfAdora1b and zfAdoraA2Aa, zfAdora2Ab receptors respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth and development of Los Angeles City and County has been one of the phenomena of the present age. The growth of a city from 50,600 to 576,000, an increase of over 1000% in thirty years is an unprecedented occurrence. It has given rise to a variety of problems of increasing magnitude.

Chief among these are: supply of food, water and shelter development of industry and markets, prevention and removal of downtown congestion and protection of life and property. These, of course, are the problems that any city must face. But in the case of a community which doubles its population every ten years, radical and heroic measures must often be taken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Introductory Remarks

A brief discussion of the overall organization of the thesis is presented along with a discussion of the relationship between this thesis and previous work on the spectroscopic properties of benzene.

II. Radiationless Transitions and Line broadening

Radiationless rates have been calculated for the 3B1u→1A1g transitions of benzene and perdeuterobenzene as well as for the 1B2u→1A1g transition of benzene. The rates were calculated using a model that considers the radiationless transition as a tunneling process between two multi-demensional potential surfaces and assuming both harmonic and anharmonic vibrational potentials. Whenever possible experimental parameters were used in the calculation. To this end we have obtained experimental values for the anharmonicities of the carbon-carbon and carbon-hydrogen vibrations and the size of the lowest triplet state of benzene. The use of the breakdown of the Born-Oppenheimer approximation in describing radiationless transitions is critically examined and it is concluded that Herzberg-Teller vibronic coupling is 100 times more efficient at inducing radiationless transitions.

The results of the radiationless transition rate calculation are used to calculate line broadening in several of the excited electronic states of benzene. The calculated line broadening in all cases is in qualitative agreement with experimental line widths.

III. 3B1u1A1g Absorption Spectra

The 3B1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained at high resolution using the phosphorescence photoexcitation method. The spectrum exhibits very clear evidence of a pseudo-Jahn-Teller distortion of the normally hexagonal benzene molecule upon excitation to the triplet state. Factor group splitting of the 0 – 0 and 0 – 0 + v exciton bands have also been observed. The position of the mean of the 0 – 0 exciton band of C6H6 when compared to the phosphorescence origin of a C6H6 guest in a C6D6 host crystal indicates that the “static” intermolecular interactions between guest and hose are different for C6H6 and C6D6. Further investigation of this difference using the currently accepted theory of isotopic mixed crystals indicates that there is a 2cm-1 shift of the ideal mixed crystal level per hot deuterium atom. This shift is observed for both the singlet and triplet states of benzene.

IV. 3E1u1A1g, Absorption Spectra

The 3E1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained using the phosphorescence photoexcitation technique. In both cases the spectrum is broad and structureless as would be expected from the line broadening calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments have been accomplished that (a) further define the nature of the strong, G-containing DNA binding sites for actinomycin D (AMD), and (b) quantitate the in vitro inhibition of E. coli RNA polymerase activity by T7 DNA-bound AMD.

Twenty-five to forty percent of the G's of crab dAT are disallowed as strong AMD binding sites. The G's are measured to be randomly distributed, and, therefore, this datum cannot be explained on the basis of steric interference alone. Poly dAC:TG binds as much AMD and as strongly as any natural DNA, so the hypothesis that the unique strong AMD binding sites are G and a neighboring purine is incorrect. The datum can be explained on the basis of both steric interference and the fact that TGA is a disallowed sequence for strong AMD binding.

Using carefully defined in vitro conditions, there is one RNA synthesized per T7 DNA by E. coli RNA polymerase. The rate of the RNA polymerase-catalyzed reaction conforms to the equation 1/rate = 1/kA(ATP) + 1/KG(GTP) + 1/KC(CTP) + 1/KU(UTP) T7 DNA-bound AMD has only modest effects on initiation and termination of the polymerase-catalyzed reaction, but a large inhibitory effect on propagation. In the presence of bound AMD, kG and kC are decreased, whereas kA and kU are unaffected. These facts are interpreted to mean that on the microscopic level, on the average, the rates of incorporation of ATP and UTP are the same in the absence or presence of bound AMD, but that the rates of incorporation of GTP and CTP are decreased in the presence of AMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental Joule-Thomson measurements were made on gaseous propane at temperatures from 100 to 280˚F and at pressures from 8 to 66 psia. Joule-Thomson measurements were also made on gaseous n-butane at temperatures from 100 to 280˚ and at pressures from 8 to 42 psia. For propane, the values of these measurements ranged from 0.07986˚F/psi at 280˚F and 8.01 psia to 0.19685˚F/psi at 100˚F and 66.15 psia. For n-butane, the values ranged from 0.11031˚F/psi at 280˚F and 9.36 psia to 0.30141˚F/psi at 100˚F and 41.02 psia. The experimental values have a maximum error of 1.5 percent.

For n-butane, the measurements of this study did not agree with previous Joule-Thomson measurements made in the Laboratory in 1935. The application of a thermal-transfer correction to the previous experimental measurements would cause the two sets of data to agree. Calculated values of the Joule-Thomson coefficient from other types of p-v-t data did agree with the present measurements for n-butane.

The apparatus used to measure the experimental Joule-Thomson coefficients had a radial-flow porous thimble and was operated at pressure changes between 2.3 and 8.6 psi. The major difference between this and other Joule-Thomson apparatus was its larger weight rates of flow (up to 6 pounds per hour) at atmospheric pressure. The flow rate was shown to have an appreciable effect on non-isenthalpic Joule-Thomson measurements.

Photographic materials on pages 79-81 are essential and will not reproduced clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cataphoretic purification of helium was investigated for binary mixtures of He with Ar, Ne, N2, O2, CO, and CO2 in DC glow discharge. An experimental technique was developed to continuously measure the composition in the anode end-bulb without sample withdrawal. Discharge currents ranged from 10 ma to 100 ma. Total gas pressure ranged from 2 torr to 9 torr. Initial compositions of the minority component in He ranged from 1.2 mole percent to 7.5 mole percent.

The cataphoretic separation of Ar and Ne from He was found to be in agreement with previous investigators. The cataphoretic separation of N2, O2, and CO from He was found to be similar to noble gas systems in that the steady-state separation improved with (1) increasing discharge current, (2) increasing gas pressure, and (3) decreasing initial composition of the minority component. In the He-CO2 mixture, the CO2 dissociated to CO plus O2. The fraction of CO2 dissociated was directly proportional to the current and pressure and independent of initial composition.

The experimental results for the separation of Ar, Ne, N2, O2, and CO from He were interpreted in the framework of a recently proposed theoretical model involving an electrostatic Peclet number. In the model the electric field was assumed to be constant. This assumption was checked experimentally and the maximum variation in electric field was 35% in time and 30% in position. Consequently, the assumption of constant electric field introduced no more than 55% variation in the electrostatic Peclet number during a separation.

To aid in the design of new cataphoretic systems, the following design criteria were developed and tested in detail: (1) electric field independent of discharge current, (2) electric field directly proportional to total pressure, (3) ion fraction of impurity directly proportional to discharge current, and (4) ion fraction of impurity independent of total pressure. Although these assumptions are approximate, they enabled the steady-state concentration profile to be predicted to within 25% for 75% of the data. The theoretical model was also tested with respect to the characteristic time associated with transient cataphoresis. Over 80% of the data was within a factor of two of the calculated characteristic times.

The electrostatic Peclet number ranged in value from 0.13 to 4.33. Back-calculated ion fractions of the impurity component ranged in value from 4.8x10-6 to 178x10-6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.