961 resultados para Calculs DFT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are a very promising solution to the problems of power generation and emission of pollutant to the environment, excellent to be used in stationary application and mobile application too. The high cost of production of these devices, mainly due to the use of noble metals as anode, is a major obstacle to massive production and deployment of this technology, however the use of intermetallic phases of platinum combined with other metals less noble has been evaluated as electrodes in order to minimize production costs and still being able to significantly improve the catalytic performance of the anode. The study of intermetallic phases, exclusively done by experimental techniques is not complete and demand that other methods need to be applied to a deeper understanding of the behavior geometric properties and the electronic structure of the material, to this end the use of computer simulation methods, which have proved appropriate for a broader understanding of the geometric and electronic properties of the materials involved, so far not so well understood.. The use of computational methods provides answers to explain the behavior of the materials and allows assessing whether the intermetallic may be a good electrode. In this research project was used the Quantum-ESPRESSO package, based on the DFT theory, which provides the self-consistent field calculations with great precision, calculations of the periodic systems interatomic force, and other post-processing calculations that points to a knowledge of the geometric and electronic properties of materials, which may be related to other properties of them, even the electrocatalytic. The electronic structure is determined from the optimized geometric structure of materials by analyzing the density of states (DOS) projected onto atomic orbital, which determines the influence of the electrocatalytic properties of the material... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wurtzite-structured ZnS nanostructures have been synthesized by means of a microwave-solvothermal method at 140°C using three precursors (chloride, nitrate and acetate). Different techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements have been employed to characterize this material. The structure, surface morphology, chemical composition and optical properties were investigated as function of precursor. In order to complement experimental results, first principles calculations at DFT level were carried out in order to obtain the relative stability of the proposed intermediates along the formation mechanism. - See more at: http://www.eurekaselect.com/117237/article#sthash.GzvnCBTB.dpuf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report a detailed structural and electronic characterization of PbMoO4 crystals by using a conventional hydrothermal (CH) method. The samples were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), field-emission gun scanning electron microscopy (FEG-SEM) and photoluminescence (PL) measurements. In addition, first-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the band structure and density of states for the PbMoO4. Analysis of both theoretical and experimental results allows to rationalize the role of order-disorder effects in the observed green PL emissions in these ordered powders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the resistance developed by the Mycobacterium tuberculosis (MTb) strains, isoniazid (INK) has been recognized as one of the best drug for treatment of Tuberculosis (Tb). The coordination of INH to ruthenium metal centers was investigated as a strategy to enhance the activity of this drug against the sensitive and resistant strains of MTb. The complexes trans-[Ru(NH3)(4)(L)(INH)](2+) (L = SO2 or NH3) were isolated and their chemical and antituberculosis properties studied. The minimal inhibitory concentration (MIC) data show that [Ru(NH3)(5)(INH)](2+) was active in both resistant and sensitive strains, whereas free INK (non-coordinated) showed to be active only against the sensitive strain. The coordination of INH to the metal center in both [Ru(NH3)(5)(INH)](2+) and trans-[Ru(NH3)(4)(SO2)(INH)](2+) complexes led to a shift in the INH oxidation potential to less positive values compared to free INH. Despite, the ease of oxidation of INH did not lead to an increase in the in vitro INH activity against MTb, it might have provided sensitivity toward resistant strains. Furthermore, ruthenium complexes with chemical structures analogous to those described above were synthesized using the oxidation products of INK as ligands (namely, isonicotinic acid and isonicotinamide). These last compounds were not active against any strains of MTb. Moreover, according to DFT calculations the formation of the acyl radical, a proposed intermediate in the INH oxidation, is favored in the [Ru(NH3)(5)(INH)](2+) complex by 50.7 kcal mol(-1) with respect to the free INH. This result suggests that the stabilization of the acyl radical promoted by the metal center would be a more important feature than the oxidation potential of the INH for the antituberculosis activity against resistant strains. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials with high photoluminescence (PL) intensity can potentially be used in optical and electronic devices. Although the PL properties of bismuth(III) oxide with a monoclinic crystal structure (α-Bi2O3) have been explored in the past few years, methods of increasing PL emission intensity and information relating PL emission to structural defects are scarce. This research evaluated the effect of a pressure-assisted heat treatment (PAHT) on the PL properties of α-Bi2O3 with a needlelike morphology, which was synthesized via a microwave-assisted hydrothermal (MAH) method. PAHT caused an angular increase between the [BiO6]-[BiO6] clusters of α-Bi2O3, resulting in a significant increase in the PL emission intensity. The Raman and XPS spectra also showed that the α-Bi2O3 PL emissions in the low-energy region (below ∼2.1 eV) are attributed to oxygen vacancies that form defect donor states. The experimental results are in good agreement with first-principles total-energy calculations that were carried out within periodic density functional theory (DFT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the periodic quantum-mechanical method with density functional theory at the B3LYP hybrid functional level in order to study the doping of SnO2 with pentavalent Sb5+. The 72-atom 2x3x2 supercell SnO2 (Sn24O48) was employed in the calculations. For the SnO2:4%Sb , one atom of Sn was replaced by one Sb atom. For the SnO2:8%Sb, two atoms of Sn were replaced by two Sb atoms. The Sb doping leads to an enhancement in the electrical conductivity of this material, because these ions substitute Sn4+ in the SnO2 matrix, leading to an electronic density rise in the conduction band, due to the donor-like behavior of the doping atom. This result shows that the bandgap magnitude depends on the doping concentration, because the energy value found for SnO2:4%Sb was 2.8eV whereas for SnO2:8%Sb it was 2.7eV. It was also verified that the difference between the Fermi level and the bottom of the conduction band is directly related to the doping concentration. - See more at: http://www.eurekaselect.com/117255/article#sthash.Z5ezhCQD.dpuf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)