951 resultados para CYCLOPENTADIENYL LIGAND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands that activate the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors that appear to be proteolytically released by members of the ADAM family of metalloproteases. Because membrane-anchored EGFR ligands are thought to be biologically active, the role of ligand release in the regulation of EGFR signaling is unclear. To investigate this question, we used metalloprotease inhibitors to block EGFR ligand release from human mammary epithelial cells. These cells express both transforming growth factor α and amphiregulin and require autocrine signaling through the EGFR for proliferation and migration. We found that metalloprotease inhibitors reduced cell proliferation in direct proportion to their effect on transforming growth factor α release. Metalloprotease inhibitors also reduced growth of EGF-responsive tumorigenic cell lines and were synergistic with the inhibitory effects of antagonistic EGFR antibodies. Blocking release of EGFR ligands also strongly inhibited autocrine activation of the EGFR and reduced both the rate and persistence of cell migration. The effects of metalloprotease inhibitors could be reversed by either adding exogenous EGF or by expressing an artificial gene for EGF that lacked a membrane-anchoring domain. Our results indicate that soluble rather than membrane-anchored forms of the ligands mediate most of the biological effects of EGFR ligands. Metalloprotease inhibitors have shown promise in preventing spread of metastatic disease. Many of their antimetastatic effects could be the result of their ability to inhibit autocrine signaling through the EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that plays a key role in the differentiation of adipocytes. Activation of this receptor in liposarcomas and breast and colon cancer cells also induces cell growth inhibition and differentiation. In the present study, we show that PPARγ is expressed in human prostate adenocarcinomas and cell lines derived from these tumors. Activation of this receptor with specific ligands exerts an inhibitory effect on the growth of prostate cancer cell lines. Further, we show that prostate cancer and cell lines do not have intragenic mutations in the PPARγ gene, although 40% of the informative tumors have hemizygous deletions of this gene. Based on our preclinical data, we conducted a phase II clinical study in patients with advanced prostate cancer using troglitazone, a PPARγ ligand used for the treatment of type 2 diabetes. Forty-one men with histologically confirmed prostate cancer and no symptomatic metastatic disease were treated orally with troglitazone. An unexpectedly high incidence of prolonged stabilization of prostate-specific antigen was seen in patients treated with troglitazone. In addition, one patient had a dramatic decrease in serum prostate-specific antigen to nearly undetectable levels. These data suggest that PPARγ may serve as a biological modifier in human prostate cancer and its therapeutic potential in this disease should be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.8-Å crystal structure of the complex formed by estradiol and the human estrogen receptor-α ligand binding domain (hERαLBD) is described and compared with the recently reported structure of the progesterone complex of the human progesterone receptor ligand binding domain, as well as with similar structures of steroid/nuclear receptor LBDs solved elsewhere. The hormone-bound hERαLBD forms a distinctly different and probably more physiologically important dimer interface than its progesterone counterpart. A comparison of the specificity determinants of hormone binding reveals a common structural theme of mutually supported van der Waals and hydrogen-bonded interactions involving highly conserved residues. The previously suggested mechanism by which the estrogen receptor distinguishes estradiol’s unique 3-hydroxy group from the 3-keto function of most other steroids is now described in atomic detail. Mapping of mutagenesis results points to a coactivator-binding surface that includes the region around the “signature sequence” as well as helix 12, where the ligand-dependent conformation of the activation function 2 core is similar in all previously solved steroid/nuclear receptor LBDs. A peculiar crystal packing event displaces helix 12 in the hERαLBD reported here, suggesting a higher degree of dynamic variability than expected for this critical substructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report identification of 9-cis-4-oxo-retinoic acid (9-cis-4-oxo-RA) as an in vivo retinoid metabolite in Xenopus embryos. 9-Cis-4-oxo-RA bound receptors (RARs) α, β, and γ as well as retinoid X receptors (RXRs) α, β, and γ in vitro. However, this retinoid displayed differential RXR activation depending on the response pathway used. Although it failed to activate RXRs in RXR homodimers, it activated RXRs and RARs synergistically in RAR-RXR heterodimers. 9-Cis-4-oxo-RA thus acted as a dimer-specific agonist. Considering that RAR-RXR heterodimers are major functional units involved in transducing retinoid signals during embryogenesis and that 9-cis-4-oxo-RA displayed high potency for modulating axial pattern formation in Xenopus, metabolism to 9-cis-4-oxo-RA may provide a mechanism to target retinoid action to this and other RAR-RXR heterodimer-mediated processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol 1,4,5-tris-phosphate (IP3) binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at ≈300 nM–1 μM, the open probability remained elevated (≈0.8) in the presence of saturating levels (10 μM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) ≈2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 μM and Hill coefficient (Hinh) ≈4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the S1S2 ligand binding domain [Kuusinen, A., Arvola, M. & Keinänen, K. (1995) EMBO J. 14, 6327–6332] of the rat α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-selective glutamate receptor GluR2 in Escherichia coli under control of a T7 promoter leads to production of >100 mg/liter of histidine-tagged S1S2 protein (HS1S2) in the form of inclusion bodies. Using a novel fractional factorial folding screen and a rational, step-by-step approach, multiple conditions were determined for the folding of the HS1S2 α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding domain. Characterization of the HS1S2 ligand binding domain showed that it is water-soluble, monomeric, has significant secondary structure, and is sensitive to trypsinolysis at sites close to the beginning of the putative transmembrane regions. Application of a fractional factorial folding screen to other proteins may provide a useful means to evaluate E. coli as an economical and convenient expression host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fas–Fas ligand (FasL) system plays an important role in the induction of lymphoid apoptosis and has been implicated in the suppression of immune responses. Herein, we report that gene transfer of FasL inhibits tumor cell growth in vivo. Although such inhibition is expected in Fas+ tumor cell lines, marked regression was unexpectedly observed after FasL gene transfer into the CT26 colon carcinoma that does not express Fas. Infection by an adenoviral vector encoding FasL rapidly eliminated tumor masses in the Fas+ Renca tumor by inducing cell death, whereas the elimination of Fas− CT26 cells was mediated by inflammatory cells. Analysis of human malignancies revealed Fas, but not FasL, expression in a majority of tumors and susceptibility to FasL in most Fas+ cell lines. These findings suggest that gene transfer of FasL generates apoptotic responses and induces potent inflammatory reactions that can be used to induce the regression of malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexes between the quorum-sensing regulator TraR and its inducing ligand autoinducer (AAI) are soluble in Escherichia coli, whereas apo-TraR is almost completely insoluble. Here we show that the lack of soluble TraR is due in large part to rapid proteolysis, inasmuch as apo-TraR accumulated to high levels in an E. coli strain deficient in Clp and Lon proteases. In pulse labeling experiments, AAI protected TraR against proteolysis only when it was added before the radiolabel. This observation indicates that TraR proteins can productively bind AAI only during their own synthesis on polysomes, whereas fully synthesized apo-TraR proteins are not functional AAI receptors. Purified apo-TraR was rapidly degraded by trypsin to oligopeptides, whereas TraR–AAI complexes were more resistant to trypsin and were cleaved at discrete interdomain linkers, indicating that TraR requires AAI to attain its mature tertiary structure. TraR–AAI complexes eluted from a gel filtration column as dimers and bound DNA as dimers. In contrast, apo-TraR was monomeric, and incubation with AAI under a variety of conditions did not cause dimerization. We conclude that AAI is critical for the folding of nascent TraR protein into its mature tertiary structure and that full-length apo-TraR cannot productively bind AAI and is consequently targeted for rapid proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-Å crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand-Gated Ion Channels (LGIC) are polymeric transmembrane proteins involved in the fast response to numerous neurotransmitters. All these receptors are formed by homologous subunits and the last two decades revealed an unexpected wealth of genes coding for these subunits. The Ligand-Gated Ion Channel database (LGICdb) has been developed to handle this increasing amount of data. The database aims to provide only one entry for each gene, containing annotated nucleic acid and protein sequences. The repository is carefully structured and the entries can be retrieved by various criteria. In addition to the sequences, the LGICdb provides multiple sequence alignments, phylogenetic analyses and atomic coordinates when available. The database is accessible via the World Wide Web (http://www.pasteur.fr/recherche/banques/LGIC/LGIC.html), where it is continuously updated. The version 16 (September 2000) available for download contained 333 entries covering 34 species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RPN4 (SON1, UFD5) protein of the yeast Saccharomyces cerevisiae is required for normal levels of intracellular proteolysis. RPN4 is a transcriptional activator of genes encoding proteasomal subunits. Here we show that RPN4 is required for normal levels of these subunits. Further, we demonstrate that RPN4 is extremely short-lived (t1/2 ≈2 min), that it directly interacts with RPN2, a subunit of the 26S proteasome, and that rpn4Δ cells are perturbed in their cell cycle. The degradation signal of RPN4 was mapped to its N-terminal region, outside the transcription–activation domains of RPN4. The ability of RPN4 to augment the synthesis of proteasomal subunits while being metabolically unstable yields a negative feedback circuit in which the same protein up-regulates the proteasome production and is destroyed by the assembled active proteasome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD1 is an MHC class I-like antigen-presenting molecule consisting of a heavy chain and β2-microglobulin light chain. The in vitro refolding of synthetic MHC class I molecules has always required the presence of ligand. We report here the use of a folding method using an immobilized chaperone fragment, a protein disulphide isomerase, and a peptidyl-prolyl cis-trans isomerase (oxidative refolding chromatography) for the fast and efficient assembly of ligand-free and ligand-associated CD1a and CD1b, starting with material synthesized in Escherichia coli. The results suggest that “empty” MHC class I-like molecules can assemble and remain stable at physiological temperatures in the absence of ligand. The use of oxidative refolding chromatography thus is extended to encompass complex multisubunit proteins and specifically to members of the extensive, functionally diverse and important immunoglobulin supergene family of proteins, including those for which a ligand has yet to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the mammalian inner ear there are six separate sensory regions that subserve the functions of hearing and balance, although how these sensory regions become specified remains unknown. Each sensory region is populated by two cell types, the mechanosensory hair cell and the supporting cell, which are arranged in a mosaic in which each hair cell is surrounded by supporting cells. The proposed mechanism for creating the sensory mosaic is lateral inhibition mediated by the Notch signaling pathway. However, one of the Notch ligands, Jagged1 (Jag1), does not show an expression pattern wholly consistent with a role in lateral inhibition, as it marks the sensory patches from very early in their development—presumably long before cells make their final fate decisions. It has been proposed that Jag1 has a role in specifying sensory versus nonsensory epithelium within the ear [Adam, J., Myat, A., Roux, I. L., Eddison, M., Henrique, D., Ish-Horowicz, D. & Lewis, J. (1998) Development (Cambridge, U.K.) 125, 4645–4654]. Here we provide experimental evidence that Notch signaling may be involved in specifying sensory regions by showing that a dominant mouse mutant headturner (Htu) contains a missense mutation in the Jag1 gene and displays missing posterior and sometimes anterior ampullae, structures that house the sensory cristae. Htu/+ mutants also demonstrate a significant reduction in the numbers of outer hair cells in the organ of Corti. Because lateral inhibition mediated by Notch predicts that disruptions in this pathway would lead to an increase in hair cells, we believe these data indicate an earlier role for Notch within the inner ear.