947 resultados para CYCLOHEXANE ADSORPTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyrins are currently used in photodynamic therapy as photosensitizers. In this paper we studied the interaction of two charged porphyrins, 5, 10, 15, 20-mesotetrakis(N-metyl-4-pyridyl) porphyrin, (TMPyP/chloride salt) cationic, and 5, 10, 15, 20-meso-tetrakis(sulfonatophenyl) porphyrin, (TPPS(4)/sodium salt) anionic, nanoassembled in phospholipid Langmuir monolayers and Langmuir-Blodgett films. Furthermore, we used chitosan to mediate the interaction between the porphyrins and the model membrane, aiming to understand the role of the polysaccharide in a molecular level. The effect of the interaction of the photosensitizers on the fluidity of the lipid monolayer was investigated by using dilatational surface elasticity. We also used photoluminescence (PL) spectroscopy to identify the porphyrins adsorbed in the phospholipid films. We observed an expansion of the monolayer promoted by the adsorption of the porphyrins into the lipid-air interface which was more pronounced in the case of TMPyP, as a consequence of a strong electrostatic interaction with the anionic monolayer. The chitosan promoted a higher adsorption of the porphyrins on the phospholipid monolayers and enabled the porphyrin to stay in its monomeric form (as confirmed by PL spectroscopy), thus demonstrating that chitosan can be pointed out as a potential photosensitizer delivery system in photodynamic therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a new oxovanadium(IV)-cucurbit[6]uril complex, which combines the catalytic properties of the metal ion with the size-excluding properties of the macrocycle cavity. In this coordination compound, the VO(2-) ions are coordinated to the oxygen atoms located at the rim of the macrocycle in slightly distorted square-pyramidal configurations, which are in fact C(2v) symmetries. This combination results in a size-selective heterogeneous catalyst, which is able to oxidize linear alkanes like n-pentane at room temperature, but not styrene, cyclohexane or z-cyclooctene, which are too big to enter the cucurbit[6]uril cavity. The results presented here contribute to understanding the mechanism of alkane catalytic oxidation by oxovanadium(IV) complexes. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cetyltrimethylammonium bromide (CTAB) and n-hexadecylamine (HDA) have been used as template in the synthesis of a mesolamellar xerogel tungsten oxide phase (WO(3)/CTAB/HDA). The catalytic properties of the resulting material were investigated in the oxidation of cis-cyclooctene, styrene, and cyclohexane, using hydrogen peroxide (H(2)O(2)), terc-butyl hydroperoxide (t-BOOH), or m-chlorperbenzoic acid (m-CPBA) as oxygen transfer agent. In general, the catalytic results were comparable to those obtained with related systems, thus suggesting the potential application of this material as catalyst for epoxidation reactions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of pore structure on the behavior of lithium intercalation into an electrode containing porous V(2)O(5) film has been investigated and compared with the electrode containing a non-porous V(2)O(5) film. X-ray diffraction patterns indicate a lamellar structure for both materials. Nitrogen adsorption isotherms, t-plot method, and Scanning Electronic Microscopy show that the route employed for the preparation of mesoporous V(2)O(5) was successful. The electrochemical performance of these matrices as lithium intercalation cathode materials was evaluated. The porous material reaches stability after several cycles more easily compared with the V(2)O(5) xerogel. Lithium intercalation into the porous V(2)O(5) film electrode is crucially influenced by pore surface and film surface irregularity, in contrast with the non-porous surface of the V(2)O(5) xerogel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layered Double Hydroxides are a class of materials that can be described as positively charged layers of divalent and trivalent cations in the centre of edge-sharing octahedra. Cholesterol derivatives such as cholic acid are substances that play an important role in the digestion of fat components by the organism. This work presents a study on the intercalation of cholate anions in calcined MgAl-CO(3)-HDL. Isotherm experiments were performed at three different temperatures to evaluate the capacity of anion removal by sorption in the calcined LDH. The plateau was reached in all conditions. Increasing temperature results in decreasing cholate sorption. Characteristic peaks of LDH regenerated with OH(-) anions were observed at lower cholate concentrations. A peak in 2 theta equals to 7.5 degrees and peaks between 15 degrees and 20 degrees are observed. Those peaks are the same as the ones observed in the pure sodium cholate PXRD. At higher cholate concentrations the sorbed solids present PXRD related to an additional layered phase, which is related to intercalation of cholate anions with basal spacing equal to 34.3 angstrom. Thus, the cholate anions are also intercalated with a bilayer molecular arrangement at equilibrium concentrations at the isotherms plateau. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the synthesis, characterization and applications of the new cerium(III) beta-diketonate Ce(hdacac)(3)(Hhdacac)(3)center dot 2H(2)O (where hdacac and Hhdacac denote, respectively, the hexadecylpentane-2,4-dionate and hexadecylpentane-2,4-dione ligands) as catalyst for the reduction of automotive emissions. Due to its amphiphilic character, this complex can be solubilized in non-polar fuels, thus generating cerium(IV) oxide particles, which efficiently catalyze the oxidation of diesel/biodiesel soot. The synthesized complex was characterized by microanalysis (C, H), thermal analysis, and infrared spectroscopy. Scanning electron microscopy, X-ray diffractometry, and specific surface area measurements attested that the complex can act as a soluble precursor of homogeneous CeO(2) spherical nanoparticles. The efficiency of this compound as catalyst for the reduction of soot emission was evaluated through static studies (comprising carbon black oxidation), which confirmed that increasing concentrations of the complex result in lower carbon black oxidation temperatures and lower activation Gibbs free energies. Dynamic studies, which embraced the combustion of diesel/biodiesel blends containing different amounts of the solubilized complex in a stationary motor, allowed a comparative evaluation of the soot emission through diffuse reflectance spectroscopy. These analyses provided very emphatic evidences of the efficiency of this new cerium complex for the control of soot emission in diesel/biodiesel motors. (c) 2009 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MCM-41 samples of various pore dimensions are synthesized. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness (comparison plot) reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage caused by capillary condensation occurred in the highly uniform mesopores. From the slopes of the sections before and after the condensation, the surface area of the mesopores is calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of the calculation as well as problems associated are discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data of nitrogen adsorption on pillared clays (PILC) are converted to comparison plots (t-plots) to derive their pore size distribution (PSD). As in the MP method, the surface area of a group of pores having similar pore sizes is calculated from the slopes of tangent lines at two succeeding points on a comparison plot. By the modified MP method in this work, the tangent line is extrapolated to the adsorption axis on the t-plot, and the difference between intercepts is used to obtain the volume of the group of pores. From the information of surface area and pore volume, the average width of the pore group can be calculated and hence the PSDs of PILCs are obtained by carrying out such calculation procedures from high to low t. With this method, PSDs of several pillared clays are calculated over a wide pore size range, from micropores to mesopores. It is found that the modified MP method could result in the underestimation of the width of ultramicropores due to the enhancement in adsorption energy in these pores. Nevertheless, the method can be very useful in calculating the surface area and pore volume, as well as a mean width of these pores. For super-micropores and mesopores, pore size can also be underestimated, due to deviation of the pore shape from a slit. The principles of the improved MP method, as well as problems associated with it are thoroughly discussed in this paper. In general, this modified method provides practically meaningful results which are consistent with the pore dimension obtained from powder X-ray diffraction measurements, but involves no complicated theoretical treatment or assumptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between dengue virus particles (DENV), sedimentation hemagglutinin particles (SHA), dengue virus envelope protein (Eprot), and solid surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM). The surfaces chosen are bare Si/SiO(2) wafers and Si/SiO(2) wafers covered with concanavalin A (ConA), jacalin (Jac), polystyrene (PS), or poly(styrene sulfonate) (PSS) films. Adsorption experiments at pH 7.2 and pH 3 onto all surfaces revealed that (i) adsorption of DENV particles took place only onto ConA under pH 7.2, because of specific recognition between glycans on DENV surface and ConA binding site; (ii) DENV particles did not attach to any of the surfaces at pH 3, suggesting the presence of positive charges on DENV surface at this pH, which repel the positively charged lectin surfaces; (iii) SHA particles are positively charged at pH 7.2 and pH 3 because they adhered to negatively charged surfaces at pH 7.2 and repelled positively charged layers at pH 3; and (iv) SHA particles carry polar groups on the surface because they attached to silanol surfaces at pH 3 and avoided hydrophobic PS films at pH 3 and pH 7.2. The adsorption behavior of Eprot at pH 7.2 revealed affinity for ConA > Jac > PSS > PS approximate to bare Si/SiO(2) layers. These findings indicate that selectivity of the Eprot adsorption is higher when it is part of virus structure than when it is free in solution. The correlation between surface energy values determined by means of contact angle measurements and DENV, SHA, or Eprot adsorption behavior was used to understand the intermolecular forces at the interfaces. A direct correlation was not found because the contributions from surface energy were probably surpassed by specific contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and methods. Dentin disks (n = 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: (1) 10 mu L of distilled water (controls), (2) 10 mu L of 0.2% chlorhexidine diacetate (0.2% CHX) or (3) 10 mu L of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 degrees C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5 h, 1 h, 3 h, 6 h, 24 h, 168 h (1 week), 672 h (4 weeks) and 1344 h (8 weeks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results. Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p < 0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p < 0.05). Conclusion. The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.