961 resultados para CULTIVATION
Resumo:
Each day, Earth's finite resources are being depleted for energy, for material goods, for transportation, for housing, and for drugs. As we evolve scientifically and technologically, and as the population of the world rapidly approaches 7 billion and beyond, among the many issues with which we are faced is the continued availability of drugs for future global health care. Medicinal agents are primarily derived from two sources, synthetic and natural, or in some cases, as semi-synthetic compounds, a mixture of the two. For the developed world, efforts have been initiated to make drug production "greener", with milder reagents, shorter reaction times, and more efficient processing, thereby using less energy, and reactions which are more atom efficient, and generate fewer by-products. However, most of the world's population uses plants, in either crude or extract form, for their primary health care. There is relatively little discussion as yet, about the long term effects of the current, non-sustainable harvesting methods for medicinal plants from the wild, which are depleting these critical resources without concurrent initiatives to commercialize their cultivation. To meet future public health care needs, a paradigm shift is required in order to adopt new approaches using contemporary technology which will result in drugs being regarded as a sustainable commodity, irrespective of their source. In this presentation, several approaches to enhancing and sustaining the availability of drugs, both synthetic and natural, will be discussed, including the use of vegetables as chemical reagents, and the deployment of integrated strategies involving information systems, biotechnology, nanotechnology, and detection techniques for the development of medicinal plants with enhanced levels of bioactive agents.
Resumo:
Samples of soil, water and sediment were collected and analyzed in order to evaluate chromium contamination due to deposition of tannery residues onto soils under different management regimes. The results showed that soils used for sugar cane cultivation were not adversely impacted. However, in the case of mango plantations, variable concentrations of chromium were measured in the soil profile, with 22.2% of values being higher than permitted legal limits, and 38.9% being at levels requiring remediation. Concentrations of bioavailable chromium were lower than the detection limit of the method (0.01 mg of chromium kg-1 of soil), indicating that all of the chromium present in the samples was either complexed or in an insoluble form. Chromium concentrations measured in samples of water and sediments were indicative of low mobility of the metal in soils. The main cause of differences found between soil samples obtained from different cultivations was the type of soil management.
Resumo:
Biospecific affinity chromatography was used to purify three cyclodextrin glycosyl transferases (CGTases) obtained from microorganisms isolated of soil. The cyclodextrins (CDs) production by CGTases was evaluated using starches from different sources. CDs were measured through the Complexation Theory and by HPLC. CGTase from Bacillus firmus strain 7B showed the best production (30 mmol/L of β-CD and 4.3 mmol/L of γ-CD), and its cultivation conditions were optimized. The maximum enzymatic activity was achieved using lung peptone, soluble starch and agitation speed of 160 rpm. Studied CGTases were shown quite interesting for the industrial production of CDs.
Resumo:
Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.
Resumo:
This work describes the chemical composition of the volatile oil of Hyptis marrubioides cultivated in field and greenhouse. The experimental design was completely randomized, with ten replications for each type of cultivation. The volatile oil was extracted by hydrodistillation and analyzed by GC-MS. The highest content of volatile oil was found for plants grown in field. The highest percentage of the compounds present in oils was observed in samples grown in the field, such as germacra-4(15),5,10(14)-trien-1-α-ol (16.34%), β-caryophyllene (10.42%), γ-muurolene (12.83%) and trans-thujone (9.98%). However, some compounds were found only in plants grown in a greenhouse, such as cis-muurol-5-en-4α-ol (10.84%), α-cadinol (3.06%) and eudesma-4(15),7-dien-1β-ol (6.82%).
Resumo:
This work describes the occurrence and contents of aporphinoids alkaloids in seedlings of Ocotea puberula from germination until 12 months old and in leaves from adult plants. Seedling leaves showed an alkaloids profile similar to leaves of adult plant. However, leaves in seedlings showed higher contents of the alkaloids boldine, dicentrine, leucoxine and isodomesticine when compared to adult plants. The alkaloids concentration in stems and leaves increased during the development of the seedlings, followed by a remarkable decrease of these compounds in roots. Cultivation in a seedling-nursery method is also described.
Resumo:
Systematic studies were undertaken in the intra zeolitic media to better understand the ability of zeolite type LTA in occluded nitrogen used in fertilizer and soil conditioning. We have measured the dry matter production from the cultivation of corn in a greenhouse for about 40 days, and also the amounts of nitrogen absorbed, retained and lost by leaching. The dry matter production in the cultivation with different concentrations of nitrogen occluded in the zeolite, was more efficient than the traditional fertilizer, which demonstrated better use of nitrogen to reduce leaching losses, which implies a possible reduction of costs for nitrogen.
Resumo:
Tobacco cultivation in shallow soils and steep landscape under intense use of agrochemicals contributes to environment degradation. In this study, we assessed the concentration of agrochemicals in draw wells used for human consumption and a creek in a small catchment predominantly cropped to tobacco. Chlorpyrifos, flumetralin, and iprodione were determined by gas chromatography with electron capture detection, while imidalcloprid, atrazine, simazine, and clomazone were quantified by high-performance liquid chromatography with UV detection. Considering all sampling sites, all agrochemicals were detected at least once, except for flumetralin. The occurrence of agrochemicals in tobacco crops is a consequence of their fast transfer to surface water.
Resumo:
Macrophomina phaseolina has been considered one of the most prevalent soybean (Glycine max) pathogens in Brazil. No genetic resistance has been determined in soybean and very little is known about the genetic diversity of this pathogen in tropical and sub-tropical regions. Fifty-five isolates from soybean roots were collected in different regions and analyzed through RAPD for genetic diversity. The UPGMA cluster analysis for 74 loci scored permitted identification of three divergent groups with an average similarity of 99%, 92% and 88%, respectively. The three groups corresponded to 5.45%, 59.95% and 34.6%, respectively of all isolates used. A single plant had three different haplotypes, while 10.9% of the analyzed plants had two different haplotypes. In another study the genetic similarity was evaluated among isolates from different hosts [soybean, sorghum (Sorghum bicolor), sunflower (Helianthus annuus), cowpea (Vigna unguiculata), corn (Zea mays) and wheat (Triticum aestivum)] as well as two soil samples from native areas. Results showed that more divergent isolates originated from areas with a single crop. Isolates from areas with crop rotation were less divergent, showing high similarity values and consequently formed the largest group. Amplification of the ITS region using primers ITS1 and ITS4 produced only one DNA fragment of 620 bp. None of the isolates were differentiated through PCR-RFLP. Our results demonstrated genetic variability among Brazilian isolates of M. phaseolina and showed that one single root can harbor more than one haplotype. Moreover, cultivation with crop rotation tends to induce less specialization of the pathogen isolates. Knowledge of this variation may be useful in screening soybean genotypes for resistance to charcoal rot.
Resumo:
This study was done to evaluate the efficiency of non-pathogenic Fusarium oxysporum isolates (141/3, 233, 233/1, 245, 245/1, 251, 251/2, 251/5, and 257) in controlling vascular wilt caused by F. oxysporum f. sp. lycopersici, race 2 (isolates C-21A, TO11, and TO245) in tomato (Lycopersicon esculentum) cv. Viradoro seedlings. In order to determine the effect of non-pathogenic F. oxysporum isolates in tomato plants, the root system of 30-day-old seedlings was immersed in conidial suspensions (10(6) ml-1) of each isolate and the seedlings were transplanted to a cultivation substrate. Thirty-five days after transplanting it was observed that the non-pathogenic F. oxysporum isolates were not pathogenic to the cv. Viradoro nor did they affect seedling development. The efficiency of the non-pathogenic F. oxysporum isolates in controlling Fusarium wilt was determined by immersing the tomato seedling roots in the conidial suspension (10(6) ml-1) of each isolate and then transplanting them into substrates previously infested with isolates of F. oxysporum f.sp. lycopersici, race 2 (10(5) conidia ml-1 of substrate). Evaluations were performed 35 days after transplanting, for severity in scale with 1=healthy plant to 6=dead plant or plant showing vessel browning and wilted leaves up to the leader shoot and seedling height. The non-pathogenic F. oxysporum isolates were efficient in reducing the severity of the disease and maintaining normal plant development. These results provide evidence of the antagonistic activity of non-pathogenic F. oxysporum isolates in controlling vascular wilt caused by F. oxysporum f. sp. lycopersici race 2 in tomato.
Resumo:
Botrytis blight caused by Botrytis cinerea is an important disease of rose (Rosa hybrida) grown in greenhouses in Brazil. As little is known regarding the disease epidemiology under greenhouse conditions, pathogen survival in crop debris and as sclerotia was evaluated. Polyethylene bags with petals, leaves, or stem sections artificially infected with B. cinerea were mixed with crop debris in rose beds, in a commercial plastic greenhouse. High percentage of plant parts with sporulation was detected until 60 days, then sporulation decreased on petals after 120 days, and sharply decreased on stems or leaves after 90 days. Sporulation on petals continued for 360 days, but was not observed on stems after 150 days or leaves after 240 days. Although the fungus survived longer on petals, stems and leaves are also important inoculum sources because high amounts of both are deposited on beds during cultivation. Survival of sclerotia produced on PDA was also quantified. Sclerotia germination was greater than 75% in the initial 210 days and 50% until 360 days. Sclerotia weight gradually declined but they remained viable for 360 days. Sclerotia were produced on the buried petals, mainly after 90 days of burial, but not on leaves or stems. Germination of these sclerotia gradually decreased after 120 days, but lasted until 360 days. Higher weight loss and lower viability were observed on sclerotia produced on petals than on sclerotia produced in vitro
Resumo:
Maranhão state in Brazil presents a big potential for the cultivation of several oleaginous species, such as babassu, soybean, castor oil plant, etc... These vegetable oils can be transformed into biodiesel by the transesterification reaction in an alkaline medium, using methanol or ethanol. The biodiesel production from a blend of these alcohols is a way of adding the technical and economical advantages of methanol to the environmental advantages of ethanol. The optimized alcohol blend was observed to be a methanol/ethanol volume ratio of 80 % MeOH: 20 % EtOH. The ester content was of 98.70 %, a value higher than the target of the ANP, 96.5 % (m/m), and the biodiesel mass yield was of 95.32 %. This biodiesel fulfills the specifications of moisture, specific gravity, kinematic viscosity and percentages of free alcohols (methanol plus ethanol) and free glycerin.
Resumo:
Indigo on väriaine, jota valmistetaan petrokemianteollisuuden välituotteena syntyvästä aniliinista. Indigolla on kuitenkin pitkä historia. Sitä on valmistettu perinteisesti eri viljelykasveista, joista Euroopassa merkittävin on ollut morsinko. Luonnonmukaisten tuotteiden suosion kasvaessa on ryhdytty selvittämään morsingon viljelyn potentiaalia. Viljelyn kannattavuuden kannalta olennaista on kasvin lehdissä esiintyvien indigon esiasteiden mahdollisimman täydellinen eristäminen. Indigoa tuotetaan uuttamalla indigon esiasteet veteen. Esiasteet hajoavat synnyttäen indoksyyliä, josta hapen vaikutuksella muodostuu indigoa. Syntynyt indigo saostuu ja laskeutuu pohjalle. Samalla kuitenkin tapahtuu epätoivottuja sivureaktioita, jotka vähentävät indigon saantoa. Tutkimuksen tavoitteena oli laboratorio- ja kenttäkokeiden avulla löytää indigon saantoa parantavat uutto-olosuhteet. Kokeiden perusteella havaittiin, että indigon saantoon vaikuttavat positiivisesti pH:n laskeminen, lämpötilan nostaminen, morsingon lehtien pilkkominen ja uuttoliuoksen sekoittaminen. Uuttoliuoksen suolapitoisuuden havaittiin puolestaan vaikuttavan indigon saantoon negatiivisesti. Laboratoriokokeiden perusteella havaittu pH:n laskemisen vaikutus indigon saantoon todistettiin myös kenttäolosuhteissa. Kokeiden havaintojen perusteella esitettiin olosuhteiden indigosaantoa parantavien vaikutusten johtuvan kahdesta tekijästä: indoksyylin stabiloitumisesta happamassa ympäristössä, jolloin sivureaktioiden osuus vähenee, sekä aineensiirron paranemisella sekoituksen, faasien rajapinnan kasvamisen ja etenkin lehtien vahakerroksen rikkoutumisen kuuman veden ja hapon vaikutuksesta.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Oidiopsis haplophylli (syn. Oidiopsis sicula) was identified as the causal agent of powdery mildew diseases occurring on five ornamental species in Brazil. This disease was observed in plastic house-grown lisianthus (Eustoma grandiflorum: Gentianaceae), in nasturtium (Tropaeolum majus: Tropaeolaceae) cultivated under open field conditions and in greenhouse-grown calla lily (Zantedeschia aethiopica: Araceae), impatiens (Impatiens balsamina: Balsaminaceae) and balloon plant (Asclepias physocarpa: Asclepiadaceae). Typical disease symptoms consisted of chlorotic areas on the upper leaf surface corresponding to a fungal colony in the abaxial surface. With the disease progression, these chlorotic areas eventually turned to necrotic (brown) lesions. Fungi morphology on all hosts was similar to that described for the imperfect stage of Leveillula taurica (O. haplophylli). The Koch's postulates were fulfilled by inoculating symptom-free plants via leaf-to-leaf contact with fungal colonies. Additional inoculations using an isolate of O. haplophylli from sweet pepper (Capsicum annuum) demonstrated that it is pathogenic to all five species belonging to distinct botanical families, indicating lack of host specialization. This is the first formal report of a powdery mildew disease on lisianthus, calla lilly, impatiens and nasturtium in Brazil. It is, to our knowledge, the first report of O. haplophyllii infecting A. physocarpa, extending the host range of this atypical powdery mildew-inducing fungus. This disease might become important on these ornamental crops especially in protected cultivation and also under field conditions in hot and dry areas of Brazil.