791 resultados para CONDUCTION DELAY
Resumo:
A novel approach based on transmissive phase-modulated fiber Bragg grating (FBG) to implement a virtual delay line interferometer (DLI) is proposed, designed, numerically simulated and fabricated. The resulting devices provide the functionality of a Mach-Zehnder interferometer (MZI), or equivalently a Michelson-Morley interferometer (MMI).
Resumo:
The effect of having a fixed differential-group delay term in the coarse-step method results in a periodic pattern in the autocorrelation function. We solve this problem by inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence, about its statistical nature.
Resumo:
A theoretical and experimental investigation of the time delay characteristics of fiber Bragg grating-based Sagnac loops (FBGSLs) is presented. Analytic expressions for the phase and time delay of the FBGSL have been derived and excellent agreement is found between their predictions and experimental results for configurations incorporating uniform-period and chirped-period gratings. For symmetrical grating structures, it is found that the FBGSL time delay response is similar to that of the incorporated grating; with asymmetrical gratings, the FBGSL response is quite different. It is shown that wavelength-division-multiplexing filters exhibiting near-zero dispersion characteristics can be implemented using FBGSLs.
Resumo:
Differential group delay measurement of narrowband fiber devices using a fiber polarization scrambler with a modulation phase shift technique is demonstrated. Accurate measurement is realized with high wavelength and delay resolution and immunity to environmental perturbation.
Resumo:
We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.
Resumo:
One of the simplest ways to create nonlinear oscillations is the Hopf bifurcation. The spatiotemporal dynamics observed in an extended medium with diffusion (e.g., a chemical reaction) undergoing this bifurcation is governed by the complex Ginzburg-Landau equation, one of the best-studied generic models for pattern formation, where besides uniform oscillations, spiral waves, coherent structures and turbulence are found. The presence of time delay terms in this equation changes the pattern formation scenario, and different kind of travelling waves have been reported. In particular, we study the complex Ginzburg-Landau equation that contains local and global time-delay feedback terms. We focus our attention on plane wave solutions in this model. The first novel result is the derivation of the plane wave solution in the presence of time-delay feedback with global and local contributions. The second and more important result of this study consists of a linear stability analysis of plane waves in that model. Evaluation of the eigenvalue equation does not show stabilisation of plane waves for the parameters studied. We discuss these results and compare to results of other models.
Resumo:
In this paper, we investigate the design of few-mode fibers (FMFs) guiding 4 to 12 non-degenerate linearly polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul transmission. The refractive index profile considered is composed by a graded-core with a cladding trench (GCCT). The optimization of the profile parameters aims the lowest possible DMD and macro-bend losses (MBL) lower than the ITU-T standard recommendation. The optimization results show that the optimum DMD and the MBL scale with the number of modes. Additionally, it is shown that the refractive-index relative difference at the core center is one of the most preponderant parameters, allowing to reduce the DMD at the expense of increasing MBL. Finally, the optimum DMD obtained for 12 LP modes is lower than 3 ps/km. © 2014 IEEE.
Resumo:
In this paper, we investigate the design of few-mode fibers (FMFs) guiding 2 to 12 linearly polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul transmission. Two different types of refractive index profile have been considered: a graded-core with a cladding trench (GCCT) profile and a multi-step-index (MSI) profile. The profiles parameters are optimized in order to achieve: the lowest possible DMD and macro-bend losses (MBL) lower than the ITU-T standard recommendation. The optimization results show that the MSI profiles present lower DMD than the minimum achieved with a GCCT profile. Moreover, it is shown that the optimum DMD and the MBL scale with the number of modes for both profiles. The optimum DMD obtained for 12 LP modes is lower than 3 ps/km using a GCCT profile and lower than 2.5 ps/km using a MSI profile. The optimization results reveal that the most preponderant parameter of the GCCT profile is the refractive index relative difference at the core center, Δnco. Reducing Δn co, the DMD is reduced at the expense of increasing the MBL. Regarding the MSI profiles, it is shown that 64 steps are required to obtain a DMD improvement considering 12 LP modes. Finally, the impact of the fabrication margins on the optimum DMD is analyzed. The probability of having a manufactured FMF with 12 LP modes and DMD lower than 12 ps/km is approximately 68% using a GCCT profile and 16% using a MSI profile. © 2013 IEEE.
Resumo:
This letter proposes the use of a refractive index profile with a graded core and a cladding trench for the design of few-mode fibers, aiming an arbitrary differential mode delay (DMD) flattened over the C+ L band. By optimizing the core grading exponent and the dimensioning of the trench, a deviation lower than 0.01 ps/km from a target DMD is observed over the investigated wavelength range. Additionally, it is found that the dimensioning of the trench is almost independent of the target DMD, thereby enabling the use of a simple design rule that guarantees a maximum DMD deviation of 1.8 ps/km for a DMD target between-200 and 200 ps/km. © 2012 IEEE.
Resumo:
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
Standing waves are studied as solutions of a complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms. The onset is described as an instability of the uniform oscillations with respect to spatially periodic perturbations. The solution of the standing wave pattern is given analytically and studied through simulations. © 2013 American Physical Society.
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
Resumo:
2000 Mathematics Subject Classification: 34K15.
Resumo:
The nanoscale radius variation of a bottle microresonator with the required dispersion characteristics is determined theoretically. Experimentally, a microresonator with the footprint 0.08 mm2 exhibiting 20 ns/nm dispersion compensation of 100 ps pulses is demonstrated. © 2014 OSA.