976 resultados para CASSINI RADAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campaign efforts by NGOs initially put conflict diamonds on the global radar screen in the late 1990s. In response, the Kimberley Process (KP), a negotiation forum between states, NGOs, and industry, was formed to discuss possible solutions to curb the trade in conflict diamonds. Less than three years later, a voluntary, global certification named the Kimberley Process Certification Scheme (KPCS) was adopted. The KPCS regulates the trade of rough diamonds by certifying all legitimate diamonds. This paper outlines the problem of conflict diamonds, how a global campaign raised awareness about the issue, and how the process of solution building unfolded in the KP. My analysis focuses on the diverse set of actors (NGOs, states, and industry) and their changing interactions over the course of the campaign and global regulation efforts. I conclude with several key lessons that capture important elements observed in this case study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of smoking on energy expenditure in eight healthy cigarette smokers who spent 24 hours in a metabolic chamber on two occasions, once without smoking and once while smoking 24 cigarettes per day. Diet and physical exercise (30 minutes of treadmill walking) were standardized on both occasions. Physical activity in the chamber was measured by use of a radar system. Smoking caused an increase in total 24-hour energy expenditure (from a mean value [+/- SEM] of 2230 +/- 115 to 2445 +/- 120 kcal per 24 hours; P less than 0.001), although no changes were observed in physical activity or mean basal metabolic rate (1545 +/- 80 vs. 1570 +/- 70 kcal per 24 hours). During the smoking period, the mean diurnal urinary excretion of norepinephrine (+/- SEM) increased from 1.25 +/- 0.14 to 1.82 +/- 0.28 micrograms per hour (P less than 0.025), and mean nocturnal excretion increased from 0.73 +/- 0.07 to 0.91 +/- 0.08 micrograms per hour (P less than 0.001). These short-term observations demonstrate that cigarette smoking increases 24-hour energy expenditure by approximately 10 percent, and that this effect may be mediated in part by the sympathetic nervous system. The findings also indicate that energy expenditure can be expected to decrease when people stop smoking, thereby favoring the gain in body weight that often accompanies the cessation of smoking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid that fills boreholes in crosswell electrical resistivity investigations provides the necessary electrical contact between the electrodes and the rock formation but it is also the source of image artifacts in standard inversions that do not account for the effects of the boreholes. The image distortions can be severe for large resistivity contrasts between the rock formation and borehole fluid and for large borehole diameters. We have carried out 3D finite-element modeling using an unstructured-grid approach to quantify the magnitude of borehole effects for different resistivity contrasts, borehole diameters, and electrode configurations. Relatively common resistivity contrasts of 100:1 and borehole diameters of 10 and 20 cm yielded, for a bipole length of 5 m, apparent resistivity underestimates of approximately 12% and 32% when using AB-MN configurations and apparent resistivity overestimates of approximately 24% and 95% when using AM-BN configurations. Effects are generally more severe at shorter bipole spacings. We report the results obtained by either including or ignoring the boreholes in inversions of 3D field data from a test site in Switzerland, where approximately 10,000 crosswell resistivity-tomography measurements were made across six acquisition planes among four boreholes. Inversions of raw data that ignored the boreholes filled with low-resistivity fluid paradoxically produced high-resistivity artifacts around the boreholes. Including correction factors based on the modeling results fora ID model with and without the boreholes did not markedly improve the images. The only satisfactory approach was to use a 3D inversion code that explicitly incorporated the boreholes in the actual inversion. This new approach yielded an electrical resistivity image that was devoid of artifacts around the boreholes and that correlated well with coincident crosswell radar images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter presents a comparison between threeFourier-based motion compensation (MoCo) algorithms forairborne synthetic aperture radar (SAR) systems. These algorithmscircumvent the limitations of conventional MoCo, namelythe assumption of a reference height and the beam-center approximation.All these approaches rely on the inherent time–frequencyrelation in SAR systems but exploit it differently, with the consequentdifferences in accuracy and computational burden. Aftera brief overview of the three approaches, the performance ofeach algorithm is analyzed with respect to azimuthal topographyaccommodation, angle accommodation, and maximum frequencyof track deviations with which the algorithm can cope. Also, ananalysis on the computational complexity is presented. Quantitativeresults are shown using real data acquired by the ExperimentalSAR system of the German Aerospace Center (DLR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel technique for computing diet-induced thermogenesis using data from 24-h respiration chamber measurements of 76 subjects. Physical activity (PA) was determined using a radar system to assess its duration and an accelerometer to evaluate its intensity. The regression line relating PA and energy expenditure facilitated calculation of the integrated thermogenic response to the total energy ingested (11.4% ± 3.8%), which is consistent with the values classically reported in the literature (10%) at the group level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A partir del buidatge exhaustiu dels fulls de subhasta del peix i de les fitxes tècniques de les embarcacions de la Confraria del Port de Llançà, es fa una anàlisi cronològica qualitativa i quantitativa dels darrers vint anys de pesca. La flota, inicialment constituïda per barques d'arrossegament i de pesca artesanal (palangre petit i tresmail), ha anat evolucionant, i ha quedat bàsicament constituïda actualment pel ròssec i el palangre de fons, que ha substituit progressivament la pesca artesanal. Les pesqueries, notablement multiespecífiques els primers anys, van donar pas, bàsicament amb la incorporació del radar, a una pesca molt més selectiva, dominada essencialment per la captura de lluç entre els anys 1980 i 1985. La progressiva incorporació del palangre de fons fa que a partir del 1986 es tendeixi novament cap a una captura més multiespecífica, perd amb canvis qualitatius importants en la composició d'espècies capturades en relació amb els primers anys

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.