994 resultados para C Programming
Resumo:
Managing programming exercises require several heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. These tools would be too specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable components, the burden of maintaining them would be prohibitive to institutions with few courses in those domains. This work presents a standard based approach for the coordination of a network of e-Learning systems participating on the automatic evaluation of programming exercises. The proposed approach uses a pivot component to orchestrate the interaction among all the systems using communication standards. This approach was validated through its effective use on classroom and we present some preliminary results.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Ada is really an unfortunate Lady. After years fighting against C/C++ villains, her major lift-up (Ada 95) had brought up a promise of fortune. However, a new strong villain (Java) has appeared trying to end her struggle for survival. Ada has now to fight with her own weapons. She will only prosper by her own merits. But two questions emerge. Do they exist? Are they better than Java’s? Our opinion is that they do exist, and are not matched by any other programming language
Resumo:
In Distributed Computer-Controlled Systems (DCCS), a special emphasis must be given to the communication infrastructure, which must provide timely and reliable communication services. CAN networks are usually suitable to support small-scale DCCS. However, they are known to present some reliability problems, which can lead to an unreliable behaviour of the supported applications. In this paper, an atomic multicast protocol for CAN networks is proposed. This protocol explores the CAN synchronous properties, providing a timely and reliable service to the supported applications. The implementation of such protocol in Ada, on top of the Ada version of Real-Time Linux is presented, which is used to demonstrate the advantages and disadvantages of the platform to support reliable communications in DCCS.
Resumo:
OBJECTIVE: To perform a systematic review of the prevalence of the HCV/ S. mansoni co-infection and associated factors in Schistosoma mansoni -infected populations. METHODS: The bibliographic search was carried out using the Medline, Lilacs, SciELO, Cochrane Library and Ibecs databases. The criteria for the studies' selection and the extraction data were based on systematic review methods. Forty five studies were found, with nine being excluded in a first screening. Thirteen articles were used for data extraction. RESULTS: The HCV infection rates in schistosomiasis populations range from 1% in Ethiopia to 50% in Egypt. Several studies had poorly defined methodologies, even in areas characterized by an association between hepatitis C and schistosomiasis, such as Brazil and Egypt, which meant conclusions were inconsistent. HCV infection rates in schistosomotic populations were heterogeneous and risk factors for acquiring the virus varied widely. CONCLUSIONS: Despite the limitations, this review may help to identify regions with higher rates of hepatitis C and schistosomiasis association. However, more studies are necessary for the development of public health policies on prevention and control of both diseases.
Resumo:
In the past few years Tabling has emerged as a powerful logic programming model. The integration of concurrent features into the implementation of Tabling systems is demanded by need to use recently developed tabling applications within distributed systems, where a process has to respond concurrently to several requests. The support for sharing of tables among the concurrent threads of a Tabling process is a desirable feature, to allow one of Tabling’s virtues, the re-use of computations by other threads and to allow efficient usage of available memory. However, the incremental completion of tables which are evaluated concurrently is not a trivial problem. In this dissertation we describe the integration of concurrency mechanisms, by the way of multi-threading, in a state of the art Tabling and Prolog system, XSB. We begin by reviewing the main concepts for a formal description of tabled computations, called SLG resolution and for the implementation of Tabling under the SLG-WAM, the abstract machine supported by XSB. We describe the different scheduling strategies provided by XSB and introduce some new properties of local scheduling, a scheduling strategy for SLG resolution. We proceed to describe our implementation work by describing the process of integrating multi-threading in a Prolog system supporting Tabling, without addressing the problem of shared tables. We describe the trade-offs and implementation decisions involved. We then describe an optimistic algorithm for the concurrent sharing of completed tables, Shared Completed Tables, which allows the sharing of tables without incurring in deadlocks, under local scheduling. This method relies on the execution properties of local scheduling and includes full support for negation. We provide a theoretical framework and discuss the implementation’s correctness and complexity. After that, we describe amethod for the sharing of tables among threads that allows parallelism in the computation of inter-dependent subgoals, which we name Concurrent Completion. We informally argue for the correctness of Concurrent Completion. We give detailed performance measurements of the multi-threaded XSB systems over a variety of machines and operating systems, for both the Shared Completed Tables and the Concurrent Completion implementations. We focus our measurements inthe overhead over the sequential engine and the scalability of the system. We finish with a comparison of XSB with other multi-threaded Prolog systems and we compare our approach to concurrent tabling with parallel and distributed methods for the evaluation of tabling. Finally, we identify future research directions.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
The definition and programming of distributed applications has become a major research issue due to the increasing availability of (large scale) distributed platforms and the requirements posed by the economical globalization. However, such a task requires a huge effort due to the complexity of the distributed environments: large amount of users may communicate and share information across different authority domains; moreover, the “execution environment” or “computations” are dynamic since the number of users and the computational infrastructure change in time. Grid environments, in particular, promise to be an answer to deal with such complexity, by providing high performance execution support to large amount of users, and resource sharing across different organizations. Nevertheless, programming in Grid environments is still a difficult task. There is a lack of high level programming paradigms and support tools that may guide the application developer and allow reusability of state-of-the-art solutions. Specifically, the main goal of the work presented in this thesis is to contribute to the simplification of the development cycle of applications for Grid environments by bringing structure and flexibility to three stages of that cycle through a commonmodel. The stages are: the design phase, the execution phase, and the reconfiguration phase. The common model is based on the manipulation of patterns through pattern operators, and the division of both patterns and operators into two categories, namely structural and behavioural. Moreover, both structural and behavioural patterns are first class entities at each of the aforesaid stages. At the design phase, patterns can be manipulated like other first class entities such as components. This allows a more structured way to build applications by reusing and composing state-of-the-art patterns. At the execution phase, patterns are units of execution control: it is possible, for example, to start or stop and to resume the execution of a pattern as a single entity. At the reconfiguration phase, patterns can also be manipulated as single entities with the additional advantage that it is possible to perform a structural reconfiguration while keeping some of the behavioural constraints, and vice-versa. For example, it is possible to replace a behavioural pattern, which was applied to some structural pattern, with another behavioural pattern. In this thesis, besides the proposal of the methodology for distributed application development, as sketched above, a definition of a relevant set of pattern operators was made. The methodology and the expressivity of the pattern operators were assessed through the development of several representative distributed applications. To support this validation, a prototype was designed and implemented, encompassing some relevant patterns and a significant part of the patterns operators defined. This prototype was based in the Triana environment; Triana supports the development and deployment of distributed applications in the Grid through a dataflow-based programming model. Additionally, this thesis also presents the analysis of a mapping of some operators for execution control onto the Distributed Resource Management Application API (DRMAA). This assessment confirmed the suitability of the proposed model, as well as the generality and flexibility of the defined pattern operators
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
Eur. J. Biochem. 270, 3904–3915 (2003)
Resumo:
The Journal of Biological Chemistry Vol. 278, No. 19, Issue of May 9, pp. 17455–17465, 2003
Resumo:
J Biol Inorg Chem (2003) 8: 777–786
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.