699 resultados para Bulb
Resumo:
Primary olfactory axons expressing different odorant receptors are interspersed within the olfactory nerve. However, upon reaching the outer nerve fiber layer of the olfactory bulb they defasciculate, sort out, and refasciculate prior to targeting glomeruli in fixed topographic positions. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear what directs the formation of the nerve fiber and glomerular layers of the olfactory bulb. While the olfactory bulb itself may provide instructive cues for the development of these layers, it is also possible that the incoming axons may simply require the presence of a physical scaffold to establish the outer laminar cytoarchitecture. In order to begin to understand the underlying role of the olfactory bulb in development of the outer layers of the olfactory bulb, we physically ablated the olfactory bulbs in OMP-IRES-LacZ and P2-IRES-tau-LacZ neonatal mice and replaced them with artificial biological scaffolds molded into the shape of an olfactory bulb. Regenerating axons projected around the edge of the cranial cavity at the periphery of the artificial scaffold and were able to form an olfactory nerve fiber layer and, to some extent, a glomerular layer. Our results reveal that olfactory axons are able to form rudimentary cytoarchitectonic layers if they are provided with an appropriately shaped biological scaffold. Thus, the olfactory bulb does not appear to provide any tropic substance that either attracts regenerating olfactory axons into the cranial cavity or induces these axons to form a plexus around its outer surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.
Resumo:
The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.
Resumo:
Eighteen Angus steers exposed to high heat load conditions were used to assess the effectiveness of four spray cooling systems, on reducing the effects of heat load, the impact on microclimate and water usage. The steers were housed in groups of nine in a fully enclosed shed and were exposed to high heat load conditions for four days. The cooling systems used were water applied via a hose, via overhead sprinklers, via sprinklers at leg height and via misters. The water used was approximately 31 oC and contained 3% NaCl. Fans were used to ensure adequate air movement over the cattle. The animal parameters measured were feed intake, respiration rate, panting score and behaviour. Climatic factors were ambient temperature and wet bulb temperature. Ammonia levels were also measured. The hose, overhead sprinklers and misting were successful in reducing heat load on the cattle. The leg wetting system did not work because the dominant cattle blocked access to the sprinklers. The misting system used the most water (5483 L) and the hose the least (845 L). The application of water had minor impacts on wet bulb temperature, but resulted in significant reductions in dry bulb temperatures.
Resumo:
The literature relating to evaporation from single droplets of pure liquids and the drying of solution and slurry droplets, and of droplet sprays has been reviewed. The heat and mass transfer rates for individual droplets suspended in free-flight, were investigated using a specially-designed vertical wind tunnel, to simulate conditions in a spray drier. The technique represented a unique alternative method for investigating evaporation from unrestrained single droplets with variable residence times. The experiments covered droplets of pure liquid allowbreak (water, isopropanol) allowbreak and of significantly different solutions (sucrose, potassium sulphate) over a range of temperatures of 37oC to 97oC, initial concentrations of 5 to 40wt/wt% , and initial drop sizes of 2.8 to 4.6mm. Drop behaviour was recorded photographically and dried particles were examined by Scanning Electron Microscopy. Correlations were developed for mass transfer coefficients for pure water droplets in free-flight; (i) experiencing oscillations, rotation and deformation, Sh = -105 + 3.9 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. > 1380 (ii) when these movements had ceased or diminished, Sh = 2.0 + 0.71 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. < 1060. Data for isopropanol drops were correlated resonably well by these equations. The heat transfer data showed a similar transition range. The drying rate curves for drops of sucrose and potassium sulphate solution exhibited three distinct stages; an initial increase in the drying rate as drop temperature reduced to the wet-bulb temperature, a short constant-rate period and a falling-rate period characterised by formation of a crust which controlled the mass transfer rate. Due to drop perturbation the rates in the high Re number region were up to 5 times greater than predicted from theory for spherical droplets. In the case of sucrose solution a `skin' formed over the drop surface prior to crust formation. This provided an additional resistance to mass transfer and resulted in extended drying times and a smooth crust of low porosity. The relevance of the results to practical spray drying operations is discussed.
Resumo:
A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.
Resumo:
The study investigated the potential applications and the limitations of non-standard techniques of visual field investigation utilizing automated perimetry. Normal subjects exhibited a greater sensitivity to kinetic stimuli than to static stimuli of identical size. The magnitude of physiological SKD was found to be largely independent of age, stimulus size, meridian and eccentricity. The absence of a dependency on stimulus size indicated that successive lateral spatial summation could not totally account for the underlying mechanism of physiological SKD. The visual field indices MD and LV exhibited a progressive deterioration during the time course of a conventional central visual field examination both for normal subjects and for ocular hypertensive patients. The fatigue effect was more pronounced in the latter stages and for the second eye tested. The confidence limits for the definition of abnormality should reflect the greater effect of fatigue on the second eye. A 330 cdm-2 yellow background was employed for blue-on-yellow perimetry. Instrument measurement range was preserved by positioning a concave mirror behind the stimulus bulb to increase the light output by 60% . The mean magnitude of SWS pathway isolation was approximately 1.4 log units relative to a 460nm stimulus filter. The absorption spectra of the ocular media exhibited an exponential increase with increase in age, whilst that of the macular pigment showed no systematic trend. The magnitude of ocular media absorption was demonstrated to reduce with increase in wavelength. Ocular media absorption was significantly greater in diabetic patients than in normal subjects. Five diabetic patients with either normal or borderline achromatic sensitivity exhibited an abnormal blue-on-yellow sensitivity; two of these patients showed no signs of retinopathy. A greater vulnerability of the SWS pathway to the diabetic disease process was hypothesized.
Resumo:
Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.
Resumo:
The studies presented in this thesis were carried out because of a lack of previous research with respect to (a) the habits and attitudes towards retinoscopy and (b) the relative accuracy of dedicated retinoscopes compared to combined types in which changing the bulb allows use in spot or streak mode. An online British survey received responses from 298 optometrists. Decision tree analyses revealed that optometrists working in multiple practices tended to rely less on retinoscopy than those in the independent sector. Only half of the respondents used dynamic retinoscopy. The majority, however, agreed that retinoscopy was an important test. The University attended also influenced the type of retinoscope used and the use of autorefractors. Combined retinoscopes were used most by the more recently qualified optometrists and few agreed that combined retinoscopes were less accurate. A trial indicated that combined and dedicated retinoscopes were equally accurate. Here, 4 optometrists (2 using spot and 2 using streak retinoscopes) tested one eye of 6 patients using combined and dedicated retinoscopes. This trial also demonstrated the utility of the relatively unknown ’15 degrees of freedom’ rule that exploits replication in factorial ANOVA designs to achieve sufficient statistical power when recruitment is limited. An opportunistic international survey explored the use of retinoscopy by 468 practitioners (134 ophthalmologists, 334 optometrists) attending contact related courses. Decision tree analyses found (a) no differences in the habits of optometrists and ophthalmologists, (b) differences in the reliance on retinoscopy and use of dynamic techniques across the participating countries and (c) some evidence that younger practitioners were using static and dynamic retinoscopy least often. In conclusion, this study has revealed infrequent use of static and dynamic retinoscopy by some optometrists, which may be the only means of determining refractive error and evaluating accommodation in patients with communication difficulties.
Resumo:
System compositional approach to model construction and research of informational processes, which take place in biological hierarchical neural networks, is being discussed. A computer toolbox has been successfully developed for solution of tasks from this scientific sphere. A series of computational experiments investigating the work of this toolbox on olfactory bulb model has been carried out. The well-known psychophysical phenomena have been reproduced in experiments.
Resumo:
E=MC³ Energy Equals Management's Continued Cost Concern, is an essay written by Fritz G. Hagenmeyer, Associate Professor, School of Hospitality Management at Florida International University. In the writing, Hagenmeyer initially tenders: “Energy problems in the hospitality industry can be contained or reduced, yielding elevated profits as a result of applied, quality management principles. The concepts, processes and procedures presented in this article are intended to aid present and future managers to become more effective with a sharpened focus on profitability.” This article is an overview of energy efficiency and the management of such. In an expanding energy consumption market with its escalating costs, energy management has become an ever increasing concern and component of responsible hospitality management, Hagenmeyer will have you know. “In endeavoring to "manage" on a day-to-day basis a functioning hospitality building's energy system, the person in charge must take on the role of Justice with her scales, attempting to balance the often varying comfort needs of guests and occupants with the invariable rising costs of energy utilized to generate and maintain such comfort conditions, since comfort is seen as an integral part of the "service," "product," or "price/value” perception of patrons,” says Hagenmeyer. In contrast to what was thought in the mid point of this century - that energy would be abundant and cheap - the reality has set-in that this is not the case; not by a long shot. The author wants you to be aware that energy costs in buildings are a force to be reckoned with; a major expense to be sure. “Since 1973, "energy-conscious design" has begun to become part of the repertoire of architects, design engineers, and construction companies,” Hagenmeyer states. “For instance, whereas office buildings of the early 1970s might have used 400,000 British Thermal Units (BTUs) per square foot year, new buildings are going up that use 55,000 to 65,000 BTUs per square foot year,” Hagenmeyer, like an incandescent bulb, illuminates you. Hagenmeyer references Robert E. Aulbach’s article - Energy Management – when informing you that the hospitality manager should not become complacent in addressing the energy cost issue, but should and must maintain a diligent focus on the problem. Hagenmeyer also makes reference to the Middle East War and to OPEC, and their influence on energy prices. In closing, Hagenmeyer suggests an - Energy Management Action Plan – which he outlines for you.
Resumo:
How experience alters neuronal ensemble dynamics and how locus coeruleus-mediated norepinephrine release facilitates memory formation in the brain are the topics of this thesis. Here we employed a visualization technique, cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH), to assess activation patterns of neuronal ensembles in the olfactory bulb (OB) and anterior piriform cortex (aPC) to repeated odor inputs. Two associative learning models were used, early odor preference learning in rat pups and adult rat go-no-go odor discrimination learning. With catFISH of an immediate early gene, Arc, we showed that odor representation in the OB and aPC was sparse (~5-10%) and widely distributed. Odor associative learning enhanced the stability of the rewarded odor representation in the OB and aPC. The stable component, indexed by the overlap between the two ensembles activated by the rewarded odor at two time points, increased from ~25% to ~50% (p = 0.004-1.43E⁻4; Chapter 3 and 4). Adult odor discrimination learning promoted pattern separation between rewarded and unrewarded odor representations in the aPC. The overlap between rewarded and unrewarded odor representations reduced from ~25% to ~14% (p = 2.28E⁻⁵). However, learning an odor mixture as a rewarded odor increased the overlap of the component odor representations in the aPC from ~23% to ~44% (p = 0.010; Chapter 4). Blocking both α- and β-adrenoreceptors in the aPC prevented highly similar odor discrimination learning in adult rats, and reduced OB mitral and granule ensemble stability to the rewarded odor. Similar treatment in the OB only slowed odor discrimination learning. However, OB adrenoceptor blockade disrupted pattern separation and ensemble stability in the aPC when the rats demonstrated deficiency in discrimination (Chapter 5). In another project, the role of α₂-adrenoreceptors in the OB during early odor preference learning was studied. OB α2-adrenoceptor activation was necessary for odor learning in rat pups. α₂-adrenoceptor activation was additive with β-adrenoceptor mediated signalling to promote learning (Chapter 2). Together, these experiments suggest that odor representations are highly adaptive at the early stages of odor processing. The OB and aPC work in concert to support odor learning and top-down adrenergic input exerts a powerful modulation on both learning and odor representation.
Resumo:
Olfactory sensory neurons (OSNs), which detect a myriad of odorants, are known to express one allele of one olfactory receptor (OR) gene (Olfr) from the largest gene family in the mammalian genome. The OSNs expressing the same OR project their axons to the main olfactory bulb where they converge to form glomeruli. This “One neuron-one receptor rule” makes the olfactory epithelium (OE), which consists of a vast number of OSNs expressing unique ORs, one of the most heterogeneous cell populations. However, the mechanism of how the single OR allele is chosen remains unclear along with the question of whether one OSN only expresses a single OR gene, a hypothesis that has not been rigorously verified while we performed the experiments. Moreover, failure of axonal targeting to single glomerulus was observed in MeCP2 deficient OSNs where delayed development was proposed as an explanation for the phenotype. How Mecp2 mutation caused this aberrant targeting is not entirely understood.
In this dissertation, we explored the transcriptomes of single and mature OSNs by single-cell RNA-Seq to reveal their heterogeneity and further studied the OR gene expression from these isolated OSNs. The singularity of sequenced OSNs was ensured by the observation of monoallelic expression of X-linked genes from the hybrid samples from crosses between mice of different strains where strain-specific polymorphisms could be used to track the allelic origins of SNP-containing reads. The clustering of expression profiles from triplicates that originated from the same cell assured that the transcriptomic identities of OSNs were maintained through the experimental process. The average gene expression profiles of sequenced OSNs correlated well to the conventional transcriptome data of FACS-sorted Omp-positive cells, and the top-ranked expression of OR was conceded in the single-OSN transcriptomes. While exploring cellular diversity, in addition to OR genes, we revealed nearly 200 differentially expressed genes among the sequenced OSNs in this study. Among the 36 sequenced OSNs, eight cells (22.2%) showed multiple OR gene expression and the presences of additional ORs were not restricted to the neighbor loci that shared the transcriptional effect of the primary OR expression, suggesting that the “One neuron-one receptor rule” might not be strictly true at the transcription level. All of the inferable ORs, including additional co-expressed ORs, were shown to be monoallelic. Our sequencing of 21 Mecp2308 mutant OSNs, of which 62% expressed more than one OR genes, and the expression levels of the additional ORs were significantly higher than those in the wild-type, suggested that MeCP2 plays a role in the regulation of singular OR gene expression. Dual label in situ hybridization along with the sequence data revealed that dorsal and ventral ORs were co-expressed in the same Mecp2 mutant OSN, further implying that MeCP2 might be involved in regulation of OR territories in the OE. Our results suggested a new role of MeCP2 in OR gene choice and ratified that this multiple-OR expression caused by Mecp2 mutation did not accompany delayed OSN development that has been observed in the previous studies on the Mecp2 mutants.
Resumo:
This thesis deals with the evaporation of non-ideal liquid mixtures using a multicomponent mass transfer approach. It develops the concept of evaporation maps as a convenient way of representing the dynamic composition changes of ternary mixtures during an evaporation process. Evaporation maps represent the residual composition of evaporating ternary non-ideal mixtures over the full range of composition, and are analogous to the commonly-used residue curve maps of simple distillation processes. The evaporation process initially considered in this work involves gas-phase limited evaporation from a liquid or wetted-solid surface, over which a gas flows at known conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with a known fraction of one of the ternary components. To explore multicomponent masstransfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a lumped approach applied to the liquid phase. Solutions to the evaporation model take the form of trajectories in temperaturecomposition space, which are then projected onto a ternary diagram to form the map. Novel algorithms are developed for computation of pseudo-azeotropes in the evaporating mixture, and for calculation of the multicomponent wet-bulb temperature at a given liquid composition. A numerical continuation method is used to track the bifurcations which occur in the evaporation maps, where the composition of one component of the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in principle be used to determine the required gas composition to produce a specific terminal composition in the liquid. A simple homotopy method is developed to track the locations of the various possible pseudo-azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase limited case is examined using a linearized analysis of the governing equations. Algorithms for the calculation of separation boundaries in the evaporation maps are developed using an optimization-based method, as well as a method employing eigenvectors derived from the linearized analysis. The flexure of the wet-bulb temperature surface is explored, and it is shown how evaporation trajectories cross ridges and valleys, so that ridges and valleys of the surface do not coincide with separation boundaries. Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing a model that includes diffusion in the liquid phase. A finite-volume method is used to solve the system of partial differential equations that results. The evaporation trajectories for the distributed model reduce to those of the lumped (gas-phase limited) model as the diffusivity in the liquid increases; under the same gas-phase conditions the permissible terminal compositions of the distributed and lumped models are the same.