950 resultados para Buck boost inverter
Resumo:
Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18 sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three level inverters. By proper selection of DC link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector based PWM techniques are the complete elimination of fifth, seventh, eleventh and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Matlab simulation results and experimental results have been presented in this paper to validate the proposed concept.
Resumo:
A circuit topology based on accumulate-and-use philosophy has been developed to harvest RF energy from ambient radiations such as those from cellular towers. Main functional units of this system are antenna, tuned rectifier, supercapacitor, a gated boost converter and the necessary power management circuits. Various RF aspects of the design philosophy for maximizing the conversion efficiency at an input power level of 15 mu W are presented here. The system is characterized in an anechoic chamber and it has been established that this topology can harvest RF power densities as low as 180 mu W/m(2) and can adaptively operate the load depending on the incident radiation levels. The output of this system can be easily configured at a desired voltage in the range 2.2-4.5 V. A practical CMOS load - a low power wireless radio module has been demonstrated to operate intermittently by this approach. This topology can be easily modified for driving other practical loads, from harvested RF energy at different frequencies and power levels.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.
Resumo:
In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.
Resumo:
Dead-time is provided in between the gating signals of the top and bottom semiconductor switches in an inverter leg to prevent the shorting of DC bus. Due to this dead time, there is a significant unwanted change in the output voltage of the inverter. The effect is different for different pulse width modulation (PWM) methodologies. The effect of dead-time on the output fundamental voltage is studied theoretically as well as experimentally for bus-clamping PWM methodologies. Further, experimental observations on the effectiveness of dead-time compensation are presented.
Resumo:
Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.
Resumo:
As petrol prices are going up in developing countries in upcoming decades low cost electric cars will become more and more popular in developing world. One of the main deciding factors for success of electric cars specially in developing world in upcoming decades will be its cost. This paper shows a cost effective method to control the speed of low cost brushed D.C. motor by combining a IC 555 Timer with a High Boost Converter. The main purpose of using High Boost Converter since electric cars needs high voltage and current which a High Boost Converter can provide even with low battery supply.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for Single Phase interfaced inverters in domestic microgrids. The PLC method is based on the injection of a repeating sequence of a specific harmonic, which is then modulated on the fundamental component of the grid current supplied by the inverters to the microgrid. The power flow and information exchange are simultaneously accomplished by the grid interacting inverters based on current programmed vector control, hence there is no need for dedicated hardware. Simulation results have been shown for inter-inverter communication under different operating conditions to propose the viability. These simulations have been experimentally validated and the corresponding results have also been presented in the paper.
Resumo:
Advanced bus-clamping pulse width modulation (ABCPWM) techniques are advantageous in terms of line current distortion and inverter switching loss in voltage source inverter-fed applications. However, the PWM waveforms corresponding to these techniques are not amenable to carrier-based generation. The modulation process in ABCPWM methods is analyzed here from a “per-phase” perspective. It is shown that three sets of descendant modulating functions (or modified modulating functions) can be generated from the three-phase sinusoidal signals. Each set of the modified modulating functions can be used to produce the PWM waveform of a given phase in a computationally efficient manner. Theoretical results and experimental investigations on a 5hp motor drive are presented
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
Analytical closed-form expressions for harmonic distortion factors corresponding to various pulsewidth modulation (PWM) techniques for a two-level inverter have been reported in the literature. This paper derives such analytical closed-form expressions, pertaining to centered space-vector PWM (CSVPWM) and eight different advanced bus-clamping PWM (ABCPWM) schemes, for a three-level neutral-point-clamped (NPC) inverter. These ABCPWM schemes switch each phase at twice the nominal switching frequency in certain intervals of the line cycle while clamping each phase to one of the dc terminals over certain other intervals. The harmonic spectra of the output voltages, corresponding to the eight ABCPWM schemes, are studied and compared experimentally with that of CSVPWM over the entire modulation range. The measured values of weighted total harmonic distortion (WTHD) of the line voltage V-WTHD are used to validate the analytical closed-form expressions derived. The analytical expressions, pertaining to two of the ABCPWM methods, are also validated by measuring the total harmonic distortion (THD) in the line current I-THD on a 2.2-kW constant volts-per-hertz induction motor drive.
Resumo:
In this paper, a current error space vector (CESV) based hysteresis controller for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed, for the first time. An open-end winding configuration is used for the induction motor. The proposed controller uses parabolic boundary with generalized vector selection logic for all sectors. The drive scheme is first studied with a space vector based PWM (SVPWM) control and from this the current error space phasor boundary is obtained. This current error space phasor boundary is approximated with four parabolas and then the system is run with space phasor based hysteresis PWM controller by limiting the CESV within the parabolic boundary. The proposed controller has increased modulation range, absence of 5th and 7th order harmonics for the entire modulation range, nearly constant switching frequency, fast dynamic response with smooth transition to the over modulation region and a simple controller implementation.
Resumo:
Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.
Resumo:
Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electret microphone, amplifier and filter. It makes use of the windows sound card and associated software for data acquisition and analysis. The measurement system is calibrated using a professional sound level meter. Acoustic noise measurements are made on an induction motor drive using the proposed system as per relevant international standards. These measurements are seen to match closely with those of a professional meter.
Resumo:
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.