736 resultados para Bubble
Resumo:
For nearly 100 years, the flotation plant metallurgist has often wondered what is happening ‘beneath the froth’. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterisation measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3 - 20 per cent, bubble sizes range between 1 and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterisation measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations.
Resumo:
The thesis is concerned with the development and testing of a mathematical model of a distillation process in which the components react chemically. The formaldehyde-methanol-water system was selected and only the reversible reactions between formaldehyde and water giving methylene glycol and between formaldehyde and methanol producing hemiformal were assumed to occur under the distillation conditions. Accordingly the system has been treated as a five component system. The vapour-liquid equilibrium calculations were performed by solving iteratively the thermodynamic relationships expressing the phase equilibria with the stoichiometric equations expressing the chemical equilibria. Using optimisation techniques, the Wilson single parameters and Henry's constants were calculated for binary systems containing formaldehyde which was assumed to be a supercritical component whilst Wilson binary parameters were calculated for the remaining binary systems. Thus the phase equilibria for the formaldehyde system could be calculated using these parameters and good accuracy was obtained when calculated values were compared with experimental values. The distillation process was modelled using the mass and energy balance equations together with the phase equilibria calculations. The plate efficiencies were obtained from a modified A.I.Ch.E. Bubble Tray method. The resulting equations were solved by an iterative plate to plate calculation based on the Newton Raphson method. Experiments were carried out in a 76mm I.D., eight sieve plate distillation column and the results were compared with the mathematical model calculations. Overall, good agreement was obtained but some discrepancies were observed in the concentration profiles and these may have been caused by the effect of limited physical property data and a limited understanding of the reactions mechanism. The model equations were solved in the form of modular computer programs. Although they were written to describe the steady state distillation with simultaneous chemical reaction of the formaldehyde system, the approach used may be of wider application.
Resumo:
Conducts a strategic group mapping exercise by analysing R&D investment, sales/marketing cost and leadership information pertaining to the pharmaceuticals industry. Explains that strategic group mapping assists companies in identifying their principal competitors, and hence supports strategic decision-making, and shows that, in the pharmaceutical industry, R&D spending, the cost of sales and marketing, i.e. detailing, and technological leadership are mobility barriers to companies moving between sectors. Illustrates, in bubble-chart format, strategic groups in the pharmaceutical industry, plotting detailing-costs against the scale of activity in therapeutic areas. Places companies into 12 groups, and profiles the strategy and market-position similarities of the companies in each group. Concludes with three questions for companies to ask when evaluating their own, and their competitors, strategies and returns, and suggests that strategy mapping can be carried out in other industries, provided mobility barriers are identified.
Resumo:
This paper reports the results of a web-based perception study of the ranking of peer reviewed accounting journals by UK academics. The design of the survey instrument allows an interactive selection of journals to be scored. The webbased format is unique in that it also includes a step in which respondents classify the journals according to methodological perspective (paradigm). This is depicted graphically in the paper in a bubble diagram that shows the "positioning" of journals according to perceptions of both paradigm and quality.
Resumo:
The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.
A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors
Resumo:
The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.
Resumo:
The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.
Resumo:
The objectives of this research were to investigate the perforamnce of a rubberwood gasifier and engine with electricity generation and to identify opportunities for the implementation of such a system in Malaysia. The experimental work included the design, fabrication and commissioning of a throated downdraft gasifier in Malaysia. The gasifier was subsequently used to investigate the effect of moisture content, dry wood capacity and particle size of rubberwood on gasifier performance. Additional experiments were also conducted to investigate the influence of two different nozzle numbers and two different throat diameters on tar cracking. A total of 101 runs were completed during the duration of the research. From the experimental data, the average mass balance was found to be 92.65%. The average energy balance over the gasifier to hot raw gas was 98.7%, to cold clean gas was 102.4% and over the complete system was 101.9%. The heat loss from the gasifier was estimated to range from 10-26% of the chemical energy of the feedstock. From the downstream operation, the heat loss was estimated to range from 17-37% of the chemical energy of rubberwood feedstock. The maximum throughput for stable operation was found to be 60-70% of the maximum dry wood capacity. The gasifier was found to have a maximum turndown ratio of 5:1. It is also postulated that the phenomenon of turndown of the gasifier is due to a `bubble theory' occurring at the gasification zone, and this hypothesis is explained. For stable power output, the working range of the engine was found to be 5-33.5 kWe. The thermal efficiency and diesel displacement of the engine was found to be 17-18% and 65-70% respectively. The research also showed that rubberwood gasification in Malaysia is feasible if the price of diesel is above MR35/l and the price of wood is below MR120/tonne.
Resumo:
This work is concerned with the assessment of a newer version of the spout-fluid bed where the gas is supplied from a common plenum and the distributor controls the operational phenomenon. Thus the main body of the work deals with the effect of the distributor design on the mixing and segregation of solids in a spout-filled bed. The effect of distributor design in the conventional fluidised bed and of variation of the gas inlet diameter in a spouted bed were also briefly investigated for purpose of comparison. Large particles were selected for study because they are becoming increasingly important in industrial fluidised beds but have not been thoroughly investigated. The mean particle diameters of the fraction ranged from 550 to 2400 mm, and their specific gravity from 0.97 to 2.45. Only work carried out with binary systems is reported here. The effect of air velocity, particle properties, bed height, the relative amount of jetsam and flotsam and initial conditions on the steady-state concentration profiles were assessed with selected distributors. The work is divided into three sections. Sections I and II deal with the fluidised bed and spouted bed systems. Section III covers the development of the spout-filled bed and its behaviour with reference to distributor design and it is shown how benefits of both spouting and fluidising phenomena can be exploited. In the fluidisation zone, better mixing is achieved by distributors which produce a large initial bubble diameter. Some common features exist between the behaviour of unidensity jetsam-rich systems and different density flotsam-rich systems. The shape factor does not seem to have an affect as long as it is only restricted to the minor component. However, in the case of the major component, particle shape significantly affects the final results. Studies of aspect ratio showed that there is a maximum (1.5) above which slugging occurs and the effect of the distributor design is nullified. A mixing number was developed for unidensity spherical rich systems, which proved to be extremely useful in quantifying the variation in mixing and segregation with changes in distributor design.
Resumo:
This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.
Resumo:
Experiments on drying of moist particles by ambient air were carried out to measure the mass transfer coefficient in a bubbling fluidized bed. Fine glass beads of mean diameter 125?µm were used as the bed material. Throughout the drying process, the dynamic material distribution was recorded by electrical capacitance tomography (ECT) and the exit air condition was recorded by a temperature/humidity probe. The ECT data were used to obtain qualitative and quantitative information on the bubble characteristics. The exit air moisture content was used to determine the water content in the bed. The measured overall mass transfer coefficient was in the range of 0.0145–0.021?m/s. A simple model based on the available correlations for bubble-cloud and cloud-dense interchange (two-region model) was used to predict the overall mass transfer coefficient. Comparison between the measured and predicted mass transfer coefficient have shown reasonable agreement. The results were also used to determine the relative importance of the two transfer regions.
Resumo:
The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.
Resumo:
'I'he accurate rreasurement of bed shear stress has been extremely difficult due to its changing values until white propunded a theory which would give constant shear along the bed of a flume. In this investigation a flume has been designed according to White's theory and by two separate methods proven to give constant shearing force along the bed. The first method applied the Hydrogen Bubble Technique to obtain accurate values of velocity thus allowing the velocity profile to be plotted and the momentum at the various test sections to be calculated. The use of a 16 mm Beaulieu movie camera allowed the exact velocity profiles created by the hydrogen bubbles to be recorded whilst an analysing projector gave the means of calculating the exact velocities at the various test sections. Simultaneously Preston's technique of measuring skin friction using Pitot tubes was applied. Twc banks of open ended water manometer were used for recording the static and velocity head pressure drop along the flume. This tvpe of manometer eliminated air locks in the tubes and was found to be sufficiently accurate. Readings of pressure and velocity were taken for various types and diameters of bed material both natural sands and glass spheres and the results tabulated. Graphs of particle Reynolds Number against bed shear stress were plotted and gave a linear relationship which dropped off at high values of Reynolds number. It was found that bed movement occurred instantaneously along the bed of the flume once critical velocity had been reached. On completion of this test a roof curve inappropriate to the bed material was used and then the test repeated. The bed shearing stress was now no longer constant and yet bed movement started instantaneously along the bed of the flume, showing that there are more parameters than critical shear stress to bed movement. It is concluded from the two separate methods applied that the bed shear stress is constant along the bed of the flume.
Resumo:
We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations.
Resumo:
Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.