884 resultados para Bone stiffness
Resumo:
Objectives: The purpose of this study was to determine the incidence and clinical symptoms associated with sharp mandibular bone irregularities (SMBI) after lower third molar extraction and to identify possible risk factors for this complication. Study Design: A mixed study design was used. A retrospective cohort study of 1432 lower third molar extractions was done to determine the incidence of SMBI and a retrospective case-control study was done to determine potential demographic and etiologic factors by comparing those patients with postoperative SMBI with controls. Results: Twelve SMBI were found (0.84%). Age was the most important risk factor for this complication. The operated side and the presence of an associated radiolucent image were also significantly related to the development of mandibular bone irregularities. The depth of impaction of the tooth might also be an important factor since erupted or nearly erupted third molars were more frequent in the SMBI group. Conclusions: SMBI are a rare postoperative complication after lower third molar removal. Older patients having left side lower third molars removed are more likely to develop this problem. The treatment should be the removal of the irregularity when the patient is symptomatic
Resumo:
BACKGROUND AND AIMS: Liver stiffness is increasingly used in the non-invasive evaluation of chronic liver diseases. Liver stiffness correlates with hepatic venous pressure gradient (HVPG) in patients with cirrhosis and holds prognostic value in this population. Hence, accuracy in its measurement is needed. Several factors independent of fibrosis influence liver stiffness, but there is insufficient information on whether meal ingestion modifies liver stiffness in cirrhosis. We investigated the changes in liver stiffness occurring after the ingestion of a liquid standard test meal in this population. METHODS: In 19 patients with cirrhosis and esophageal varices (9 alcoholic, 9 HCV-related, 1 NASH; Child score 6.9±1.8), liver stiffness (transient elastography), portal blood flow (PBF) and hepatic artery blood flow (HABF) (Doppler-Ultrasound) were measured before and 30 minutes after receiving a standard mixed liquid meal. In 10 the HVPG changes were also measured. RESULTS: Post-prandial hyperemia was accompanied by a marked increase in liver stiffness (+27±33%; p<0.0001). Changes in liver stiffness did not correlate with PBF changes, but directly correlated with HABF changes (r = 0.658; p = 0.002). After the meal, those patients showing a decrease in HABF (n = 13) had a less marked increase of liver stiffness as compared to patients in whom HABF increased (n = 6; +12±21% vs. +62±29%,p<0.0001). As expected, post-prandial hyperemia was associated with an increase in HVPG (n = 10; +26±13%, p = 0.003), but changes in liver stiffness did not correlate with HVPG changes. CONCLUSIONS: Liver stiffness increases markedly after a liquid test meal in patients with cirrhosis, suggesting that its measurement should be performed in standardized fasting conditions. The hepatic artery buffer response appears an important factor modulating postprandial changes of liver stiffness. The post-prandial increase in HVPG cannot be predicted by changes in liver stiffness.
Resumo:
Soitinnus: Sekakuoro.
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.
Resumo:
The aim of our study was to assess the diagnostic usefulness of the gray level parameters to distinguish osteolytic lesions using radiological images. Materials and Methods: A retrospective study was carried out. A total of 76 skeletal radiographs of osteolytic metastases and 67 radiographs of multiple myeloma were used. The cases were classified into nonflat (MM1 and OL1) and flat bones (MM2 and OL2). These radiological images were analyzed by using a computerized method. The parameters calculated were mean, standard deviation, and coefficient of variation (MGL, SDGL, and CVGL) based on gray level histogram analysis of a region-of-interest.Diagnostic utility was quantified bymeasurement of parameters on osteolyticmetastases andmultiplemyeloma, yielding quantification of area under the receiver operating characteristic (ROC) curve (AUC). Results: Flat bone groups (MM2 and OL2) showed significant differences in mean values of MGL ( = 0.048) and SDGL ( = 0.003). Their corresponding values of AUC were 0.758 for MGL and 0.883 for SDGL in flat bones. In nonflat bones these gray level parameters do not show diagnostic ability. Conclusion: The gray level parametersMGL and SDGL show a good discriminatory diagnostic ability to distinguish between multiple myeloma and lytic metastases in flat bones.
Resumo:
The aim of this study was to verify the presence of meat and bone meal (MBM) in ruminant feed, by identifying the cholesterol using gas chromatography with a flame ionization detector. The proposed method demonstrated precision, trueness, and capability to detect MBM in the ruminant feed.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
Background: In Finland, breast cancer (BC) is the most common cancer among women, and prostate cancer (PC) that among men. At the metastatic stage both cancers remain essentially incurable. The goals of therapy include palliation of symptoms, improvement or maintenance of quality of life (QoL), delay of disease progression, and prolongation of survival. Balancing between efficacy and toxicity is the major challenge. With increasing costs of new treatments, appropriate use of resources is paramount. When new treatment regimes are introduced into clinical practice a comprehensive assessment of clinical benefit, adverse effects and cost is necessary. Both BC and PC show a predilection to metastasize to bone. Bone metastases cause significant morbidity impairing the patients´ QoL. Diagnosis of bone metastases relies mainly on radiological methods, which however lack optimal sensitivity and specificity. New tools are needed for detection and follow-up of bone metastases. Aims: Anthracyclines and taxanes are effective chemotherapeutic agents in the treatment of metastatic breast cancer (MBC) with different mechanisms of action. Therefore, evaluation of the combination of anthracyclines with taxanes was a justifiable approach in the treatment of MBC patients. We assessed the efficacy, toxicity, cost of treatment and QoL of BC patients treated with first-line chemotherapy for metastatic disease with the combination epirubicin and docetaxel. We also evaluated the diagnostic potential of tartrate-resistant acid phosphatase 5b (TRACP 5b) and carboxyterminal telopeptides of type I collagen (ICTP) in the diagnosis of bone metastases in BC and TRACP 5b in PC patients. Results: The combination of epirubicin and docetaxel was effective in this phase II study, but required individual dose adjustment to avoid neutropenic infections, and the use of growth factors to maintain a feasible dose level. The response rate was 54 % (95 % CI 37-71) and the median overall survival (OS) was 26 months. Of the patients, 87 % were treated for infections. The treatment of adverse events required additional use of health resources mainly due to neutropenic infections, thereby raising direct treatment costs by 20 %. Despite adverse events, the global QoL was not significantly compromised during the treatment. Clinically evident acute cardiac toxicity was not observed. The combination of serum TRACP 5b and ICTP was at least equally sensitive and specific in detection of of bone metastases as commonly used total alkaline phosphatise (tALP) in BC patients. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC patients. Conclusions: Treatment with epirubicin and docetaxel showed high efficacy in first-line chemotherapy of MBC. The relatively high incidence of neutropenic infections requiring hospitalization increased the treatment costs. Despite adverse events, the global QoL of the patients was not significantly compromised. The combination of TRACP 5b and ICTP showed similar activity as tALP in detecting bone metastases in MBC. In contrast, TRACP 5b was less specific and sensitive than tALP as a marker of skeletal changes in PC.
Resumo:
At the end of the 1990s the stock breeding in the Europe was suffering from the animal disease epidemics such as Bovine spongiform encephalopathy (BSE) and foot –and mouth disease. The European Union (EU) tackled to this problem by tightening the legislation of animal by-products. At this point, rendering and fat producing industries faces new challenges, which they have to cope with in a way of trying to find alternatives to their products (animal fats and meat and bone meal). One of the most promising alternatives to utilize these products was to use them in energy production purposes. The purpose of the Thesis was to examine the utilization possibilities of Meat and bone meal (MBM) for energy production. The first part of the Thesis consists of theory part. The theory part includes evaluation of basic properties of MBM as a fertilizer and as a fuel, legislative evaluation and evaluation of different burning techniques. The second part of the Thesis consists of burning tests in Energy laboratory of LUT with different mixtures of peat and MBM. The purpose of the burning tests was to identify co-firing possibilities of peat and MBM and emission- and ash properties for peat and MBM.
Resumo:
Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.
Resumo:
Breast cancer that has metastasized to bone is currently an incurable disease, causing significant morbidity and mortality. The aim of this thesis work was to elucidate molecular mechanisms of bone metastasis and thereby gain insights into novel therapeutic approaches. First, we found that L‐serine biosynthesis genes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase (PSPH), were up‐regulated in highly bone metastatic MDA‐MB‐231(SA) cells as compared with the parental breast cancer cell line. Knockdown of serine biosynthesis inhibited proliferation of MDA‐MB‐231(SA) cells, and L‐serine was essential for the formation of bone resorbing osteoclasts. Clinical data demonstrated that high expression of PHGDH and PSAT1 was associated with decreased relapse‐free and overall survival and with features typical of poor outcome in breast cancer. Second, RNA interference screening pointed out heparan sulfate 6‐O‐sulfotransferase 2 (HS6ST2) as a critical gene for transforming growth factor β (TGF‐β)‐induced interleukin 11 (IL‐11) production in MDA‐MB‐231(SA) cells. Exogenous heparan sulfate glycosaminoglycans heparin and K5‐NSOS also inhibited TGF‐β‐induced IL‐11 production in MDA‐MB‐231(SA) cells. Furthermore, K5‐NSOS decreased osteolytic lesion area and tumor burden in bone in mice. Third, we discovered that the microRNAs miR‐204, ‐211 and ‐379 inhibited IL‐11 expression in MDA‐MB‐231(SA) cells through direct targeting of the IL‐11 mRNA. MiR‐379 also inhibited Smad‐mediated signaling. Gene expression profiling of miR‐204 and ‐379 transfected cells indicated that these microRNAs down‐regulate several bone metastasis‐relevant genes, including prostaglandin‐endoperoxide synthase 2 (PTGS2). Taken together, this study identified three potential treatment strategies for bone metastatic breast cancer: inhibition of serine biosynthesis, heparan sulfate glycosaminoglycans and restoration of miR‐204/‐211/‐379.
Resumo:
The determination of the modulus tangent (Eci ) and of the modulus secant (Ecs) of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck). Relations are also used to determine the transversal modulus (Gc) and, in the case of the Poisson's ratio (ν), a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.
Resumo:
Trusses are structural systems commonly used in projects, being employed mainly in roof structures, present in most rural buildings. The design of trusses, as well as other structural systems, requires the determination of displacements, strains and stresses. However, the project is developed from an ideal model of calculation, considering free rotation between the elements of a connection. This paper presents a computer program for the analysis of bidimensional wooden trusses with connections formed with two screws per node. The formulation is based on the flexibility method, taking into account the influence of the effect of semi-rigid connections formed by two screws. An example of a structure is presented and analyzed by the program developed here, highlighting the importance of behavior analysis on semi-rigid connections.
Resumo:
Neurofibromatosis 1 (NF1) is an autosomal dominant hereditary syndrome, affecting skin, neural tissues and skeleton. Hallmarks of NF1 include benign cutaneous neurofibroma tumors, pigmentation lesions on the skin and in the iris, learning disabilities and predisposition to selected malignancies. Low bone mineral density (BMD) and osteopenia/osteoporosis are common in NF1. Osteoporosis is a systemic disorder characterized by low bone mineral density and increased fracture risk. Treatment of osteoporosis aims to prevent falls and decrease fracture risk. Osteoporosis is diagnosed in adults by measuring BMD and evaluating clinical risk factors of the patient. Bone turnover is a process of old bone resorbed by osteoclasts and new bone formed by osteoblasts. Multinuclear osteoclasts are derived from osteoclast progenitors, which can be isolated from peripheral blood. Osteoclast progenitors were isolated from 17 NF1 patients and healthy controls, and cultured in vitro to osteoclasts. NF1 osteoclasts are hyperactive, displaying increased differentiation and resorption capacity, abnormal morphology and tolerance to serum deprivation compared to control osteoclasts. These findings expanded the study to evaluate the effects of bisphosphonates, drugs designed to treat osteoporosis, in osteoclasts derived from blood samples of 20 NF1 and control persons. The number of control osteoclasts was expectedly reduced after bisphosphonate treatment. However, NF1 osteoclasts tolerated the apoptotic effect of alendronate, zoledronic acid and clodronate in vitro compared to controls. NF1-related osteoporosis was found in ~20 % of the patients, and selected laboratory parameters were measured. Patients with NF1 have increased levels of serum CTX and PINP, reflecting increased bone turnover in vivo. BMD decreases progressively in NF1 as evaluated in 19 NF1 patients 12 years after their initial BMD measurement. Patients with NF1-related osteopenia often progress to osteoporosis. This was found in patients aged 37-76.