889 resultados para Body-cell Mass
Resumo:
New techniques in air-displacement plethysmography seem to have overcome many of the previous problems of poor reproducibility and validity. These have made body-density measurements available to a larger range of individuals, including children, elderly and sick patients who often have difficulties in being submerged underwater in hydrodensitometry systems. The BOD POD air-displacement system (BOD POD body composition system; Life Measurement Instruments, Concord, CA, USA) is more precise than hydrodensitometry, is simple and rapid to operate (approximately 1 min measurements) and the results agree closely with those of hydrodensitometry (e.g. +/-3.4% for estimation of body fat). Body line scanners employing the principles of three-dimensional photography are potentially able to measure the surface area and volume of the body and its segments even more rapidly (approximately 10 s), but the validity of the measurements needs to be established. Advances in i.r. spectroscopy and mathematical modelling for calculating the area under the curve have improved precision for measuring enrichment of (H2O)-H-2 in studies of water dilution (CV 0.1-0.9% within the range of 400-1000 mu l/l) in saliva, plasma and urine. The technique is rapid and compares closely with mass spectrometry (bias 1 (SD 2) %). Advances in bedside bioelectrical-impedance techniques are making possible potential measurements of skinfold thicknesses and limb muscle mass electronically. Preliminary results suggest that the electronic method is more reproducible (intra-and inter-individual reproducibility for measuring skinfold thicknesses) and associated with less bias (+ 12%), than anthropometry (+ 40%). In addition to these selected examples, the 'mobility' or transfer of reference methods between centres has made the distinction between reference and bedside or field techniques less distinct than in the past.
Resumo:
Back,ground To examine the role of long-term swimming exercise on regional and total body bone mineral density (BMD) in men. Methods. Experimental design: Cross-sectional. Setting: Musculoskeletal research laboratory at a medical center, Participants:We compared elite collegiate swimmers (n=11) to age-, weight-, and height-matched non-athletic controls (n=11), Measures: BMD (g/cm(2)) of the lumbar spine L2-4, proximal femur (femoral neck, trochanter, Ward's triangle), total body and various subregions of the total body, as well as regional and total body fat and bone mineral-free lean mass (LM) was assessed by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000/W). Results. Swimmers, who commenced training at 10.7+/-3.7 yrs (mean+/-SD) and trained for 24.7+/-4.2 hrs per week, had a greater amount of LM (p<0.05), lower fat mass (p<0.001) and percent body fat (9.5 vs 16.2 %, p<0.001) than controls. There was no significant difference between groups for regional or total body BRID, In stepwise multiple regression analysis, body weight was a consistent independent predictor of regional and total body BMD, Conclusions. These results suggest that long-term swimming is not an osteogenic mode of training in college-aged males. This supports our previous findings in young female swimmers who displayed no bone mass benefits despite long-standing athletic training.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
Background. A decline in muscle mass and muscle strength characterizes normal aging. As clinical and animal studies show it relationship between higher cytokine levels and low muscle mass, the aim of this study was to investigate whether markers, of inflammation are associated with muscle mass and strength in well-functioning elderly persons. Methods. We Used baseline data (1997-1998) of the Health, Aging, and Body Composition (Health ABC) Study on 3075 black and white men and women aged 70-79 years. Midthigh muscle cross-sectional area (computed tomography), appendicular muscle mass (dual-energy x-ray ab absorptiometry). isokinetic knee extensor strength (KinCom). and isometric inip strength were measured. plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were assessed by enzyme-linked immunosorbent assay (ELISA). Results. Higher cytokine levels were generally associated with lower muscle mass and lower muscle strength. The most consistent relationship across the gender and race groups was observed for IL-6 and grip strength: per SD increase in IL-6, grip strength was 1.1 to 2.4 kg lower (p < .05) after adjustment for age, clinic Site. health status, medications, physical activity. smoking. height. and body fat. Ail overall measure of elevated cytokine level was created by combining the levels of IL-6 and TNF-alpha. With the exception of white men, elderly persons having high levels of IL-6 (> 1.80 pg/ml) as well as high levels of TNF-alpha (> 3.20 pg/ml) had a smaller muscle area, less appendicular mass. a lower knee extensor strength. and a lower grip strength compared to those with low levels of both cytokines. Conclusions. Higher plasma concentrations of IL-6 and TNF-alpha are associated with lower muscle mass and lower muscle strength in well-functioning older men and women. Higher cytokine levels. as often observed in healthy older persons. may contribute to the loss Of muscle mass and strength that accompanies aging.
Resumo:
A proteomics approach was used to identify the proteins potentially implicated in the cellular response concomitant with elevated production levels of human growth hormone in a recombinant Chinese hamster ovary (CHO) cell line following exposure to 0.5 mM butyrate and 80 muM zinc sulphate in the production media. This involved incorporation of two-dimensional (2-D) gel electrophoresis and protein identification by a combination of N-terminal sequencing, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, amino acid analysis and cross species database matching. From these identifications a CHO 2-D reference,map and annotated database have been established. Metabolic labelling and subsequent autoradiography showed the induction of a number of cellular proteins in response to the media additives butyrate and zinc sulphate. These were identified as GRP75, enolase and thioredoxin. The chaperone proteins GRP78, HSP90, GRP94 and HSP70 were not up-regulated under these conditions.
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
Considering that mycobacterial heat-shock protein 65 (hsp65) gene transfer can elicit a profound antitumoral effect, this study aimed to establish the safety, maximum-tolerated dose (MTD) and preliminary efficacy of DNA-hsp65 immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). For this purpose, 21 patients with unresectable and recurrent HNSCC were studied. Each patient received three ultrasound-guided injections at 21-day intervals of: 150, 600 or 400 mu g of DNA-hsp65. Toxicity was graded according to CTCAE directions. Tumor volume was measured before and after treatment using computed tomography scan. The evaluation included tumor mass variation, delayed-type hypersensitivity response and spontaneous peripheral blood mononuclear cell proliferation before and after treatment. The MTD was 400 mg per dose. DNA-hsp65 immunotherapy was well tolerated with moderate pain, edema and infections as the most frequent adverse effects. None of the patients showed clinical or laboratory alterations compatible with autoimmune reactions. Partial response was observed in 4 out of 14 patients who completed treatment, 2 of which are still alive more than 3 years after the completion of the trial. Therefore, DNA-hsp65 immunotherapy is a feasible and safe approach at the dose of 400 mg per injection in patients with HNSCC refractory to standard treatment. Further studies in a larger number of patients are needed to confirm the efficacy of this novel strategy.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Resumo:
The aim of this study was to evaluate risk factors for low bone mineral density (BMD) and vertebral fractures, in juvenile systemic lupus (JSLE). Thirty-one consecutive patients with JSLE were compared with 31 gender- and age-matched healthy controls. BNID and body composition from all participants were measured using dual-energy X-ray absorptiometry. Vertebral fractures were defined as a reduction of >= 20% of the vertebral height for all patients. Lumbar spine and total femur BMD was significantly decreased in patients compared with controls (P = 0.021 and P = 0.023, respectively). A high frequency of vertebral fractures (22.58%) was found in patients with JSLE. Analysis of body composition revealed lower lean mass (P = 0.033) and higher fat mass percentage (P = 0.003) in patients than in controls. Interestingly, multiple linear regression using BMD as a dependent variable showed a significant association with lean mass in lumbar spine (R(2) = 0.262; P = 0.004) and total femur (R(2) = 0.419, P = 0.0001), whereas no association was observed with menarche age, SLE Disease Activity Index, Systemic Lupus International Collaborating Clinics/American College of Rheumatology, and glucocorticoid. This study indicates that low BMD and vertebral fractures are common in JSLE, and the former is associated with low lean mass, suggesting that muscle rehabilitation may be an additional target for bone therapeutic approach.
Resumo:
The aim of this study was to analyze vitamin D levels and their association with bone mineral density and body composition in primary antiphospholipid syndrome. For this cross-sectional study 23 premenopausal women with primary antiphospholipid syndrome (Sapporo criteria) and 23 age- and race-matched healthy controls were enrolled. Demographic, anthropometric, clinical and laboratorial data were collected using clinical interview and chart review. Serum 25-hydroxyvitamin D levels, parathormone, calcium and 24-hour urinary calcium were evaluated in all subjects. Bone mineral density and body composition were studied by dual X-ray absorptiometry. The mean age of patients and controls was 33 years. Weight (75.61 [20.73] vs. 63.14 [7.34] kg, p=0.009), body mass index (29.57 [7.17] vs. 25.35 [3.37] kg, p=0.014) and caloric ingestion (2493 [1005.6] vs. 1990 [384.1] kcal/day, p=0.03) were higher in PAPS than controls. All PAPS were under oral anticoagulant with INR within therapeutic range. Interestingly, biochemical bone parameters revealed lower levels of 25-hydroxyvitamin D [21.64 (11.26) vs. 28.59 (10.67) mg/dl, p=0.039], serum calcium [9.04 (0.46) vs. 9.3 (0.46) mg/dl, p=0.013] and 24-hour urinary calcium [106.55 (83.71) vs. 172.92 (119.05) mg/d, p=0.027] in patients than in controls. Supporting these findings, parathormone levels were higher in primary antiphospholipid syndrome than in controls [64.82 (37.83) vs. 44.53 (19.62) pg/ml, p=0.028]. The analysis of osteoporosis risk factors revealed that the two groups were comparable (p>0.05). Lumbar spine, femoral neck, total femur and whole body bone mineral density were similar in both groups (p>0.05). Higher fat mass [28.51 (12.93) vs. 20.01 (4.68) kg, p=0.005] and higher percentage of fat [36.08 (7.37) vs. 31.23 (4.64)%, p=0.010] were observed in PAPS in comparison with controls; although no difference was seen regarding lean mass. In summary, low vitamin D in primary antiphospholipid syndrome could be secondary to higher weight and fat mass herein observed most likely due to adipocyte sequestration. This weight gain may also justify the maintenance of bone mineral density even with altered biochemical bone parameters. Lupus (2010) 19, 1302-1306.
Resumo:
Background-Coronary artery bypass graft surgery with cardiopulmonary bypass is a safe, routine procedure. Nevertheless, significant morbidity remains, mostly because of the body`s response to the nonphysiological nature of cardiopulmonary bypass. Few data are available on the effects of off-pump coronary artery bypass graft surgery (OPCAB) on cardiac events and long-term clinical outcomes. Methods and Results-In a single-center randomized trial, 308 patients undergoing coronary artery bypass graft surgery were randomly assigned: 155 to OPCAB and 153 to on-pump CAB (ONCAB). Primary composite end points were death, myocardial infarction, further revascularization (surgery or angioplasty), or stroke. After 5-year follow-up, the primary composite end point was not different between groups (hazard ratio 0.71, 95% CI 0.41 to 1.22; P=0.21). A statistical difference was found between OPCAB and ONCAB groups in the duration of surgery (240 +/- 65 versus 300 +/- 87.5 minutes; P<0.001), in the length of ICU stay (19.5 +/- 17.8 versus 43 +/- 17.0 hours; P<0.001), time to extubation (4.6 +/- 6.8 versus 9.3 +/- 5.7 hours; P<0.001), hospital stay (6 +/- 2 versus 9 +/- 2 days; P<0.001), higher incidence of atrial fibrillation (35 versus 4% of patients; P<0.001), and blood requirements (31 versus 61% of patients; P<0.001), respectively. The number of grafts per patient was higher in the ONCAB than the OPCAB group (2.97 versus 2.49 grafts/patient; P<0.001). Conclusions-No difference was found between groups in the primary composite end point at 5-years follow-up. Although OPCAB surgery was related to a lower number of grafts and higher episodes of atrial fibrillation, it had no significant implications related to long-term outcomes.