980 resultados para Biomass, dry mass, standard deviation
Resumo:
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.
Resumo:
Using bathymetric transects of surface sediments underlying similar sea surface temperatures but exposed to increasing dissolution, we examined the processes which affect the relationship between foraminiferal Mg/Ca and d18O. We found that Globigerinoides saccculifer calcifies over a relatively large range of water depth and that this is apparent in their Mg content. On the seafloor, foraminiferal Mg/Ca is substantially altered by dissolution with the degree of alteration increasing with water depth. Selective dissolution of the chamber calcite, formed in surface waters, shifts the shell's bulk Mg/Ca and d18O toward the chemistries of the secondary crust acquired in colder thermocline waters. The magnitude of this shift depends on both the range of temperatures over which the shell calcified and the degree to which it is subsequently dissolved. In spite of this shift the initial relationship between Mg/Ca and d18O, determined by their temperature dependence, is maintained. We conclude that paired measurements of d18O and Mg/Ca can be used for reconstructing d18Owater, though care must be taken to determine where in the water column the reconstruction applies.
Resumo:
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.
Resumo:
No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.
Resumo:
Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.
Resumo:
Among the Siberian shelf seas the Kara Sea is most strongly influenced by riverine runoff with nearly 1500 km fresh water discharge per year. This fresh water, discharged mainly by Ob and Yenisei, contains about 3.1 * 106 and 4.6 * 106 tons of total organic carbon per year, respectively (Gordeev et al. 1996). Little is known about the relevance of this organic material for biological communities, neither for the Kara Sea nor for the adjacent deep basins of the central Arctic Ocean. Aiming at elucidating the fate of fluvial matter transported from the rivers via estuaries into the central Arctic Ocean and the relative importance of marine organic matter being produced such information is crucial. Here we present calculations on the organic carbon demand of the Kara Sea macrozoobenthos based on measured biomass (total wet weight [ww] per 0.25 m ) from quantitative box corer samples and empirical relationships between biomass, annual production, annual respiration, and carbon remineralisation. This bottom-up approach may serve as a first estimate of the carbon remineralization potential of a given zoobenthos community (or area) as long as no data on in situ respiration rates are available. Our data basis comprises 54 stations sampled in summer seasons 1997, 1999 and 2000 in the Kara Sea at water depths between 10 and 68 m. The geographical area represented by stations analysed covers roughly 178 000 km**2, which is about one fifth of the total Kara Sea area. In this area, 290 species of invertebrate macrozoobenthos were identified with polychaeta, Crustacea, mollusca and echinodermata being the most abundant. For all stations analysed, mean biomass values ranged between 4.3 and 778.1 g ww/m**2 with organic carbon demands between 3.5 and 43.2 mg C/m**2/d. For the area of 178 000 km2 a preliminary total consumption of 1.4 * 10**6t Corg/y (equivalent to 21.5 mg C/m**2/d) was calculated for the macrozoobenthos. An extrapolation of our data would lead to an annual carbon demand of about 5-7 * 106 t for the whole Kara Sea macrozoobenthos (or 15.5-21.7 mg C/m2/d).
Resumo:
The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show strong meridional Cd isotope and concentration gradients modulated by the Antarctic Fronts, with a clear biogeochemical divide located near 56°S. The coincidence of the Cd isotope divide with the Southern Boundary of the Antarctic Circumpolar Current (ACC),together with evidence for northward advection of the Cd signal in the ACC, demonstrate that Cd isotopes trace surface ocean circulation regimes. The relationships between Cd isotope ratios and concentrations display two negative correlations, separating the ACC and Weddell Gyre into two distinct Cd isoscapes. These arrays are consistent with Rayleigh fractionation and imply a doubling of the isotope effect due to biological consumption of Cd during water transport from the Weddell Gyre into the ACC. The increase in magnitude of Cd isotope fractionation can be accounted for by differences in the phytoplankton biomass, community composition, and their physiological uptake mechanisms in the Weddell Gyre and ACC, thus linking Cd isotope fractionation to primary production and the global carbon cycle.
Resumo:
Over 150 million cubic meter of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.
Resumo:
The compositional record of the AND-2A drillcore is examined using petrological, sedimentological, volcanological and geochemical analysis of clasts, sediments and pore waters. Preliminary investigations of basement clasts (granitoids and metasediments) indicate both local and distal sources corresponding to variable ice-volume and ice-flow directions. Low abundance of sedimentary clasts (e.g., arkose, litharenite) suggests reduced contributions from sedimentary covers while intraclasts (e.g., diamictite, conglomerate) attest to intrabasinal reworking. Volcanic material includes pyroclasts (e.g., pumice, scoria), sediments and lava. Primary and reworked tephra layers occur within the Early Miocene interval (1093 to 640 metres below sea floor mbsf). The compositions of volcanic clasts reveal a diversity of alkaline types derived from the McMurdo Volcanic Group. Finer-grained sediments (e.g., sandstone, siltstone) show increases in biogenic silica and volcanic glass from 230 to 780 mbsf and higher proportions of terrigenous material c. 350 to 750 mbsf and below 970 mbsf. Basement clast assemblages suggest a dominant provenance from the Skelton Glacier - Darwin Glacier area and from the Ferrar Glacier - Koettlitz Glacier area. Provenance of sand grains is consistent with clast sources. Thirteen Geochemical Units are established based on compositional trends derived from continuous XRF scanning. High values of Fe and Ti indicate terrigenous and volcanic sources, whereas high Ca values signify either biogenic or diagenic sources. Highly alkaline and saline pore waters were produced by chemical exchange with glass at moderately elevated temperatures.
Resumo:
Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.
Resumo:
The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.
Resumo:
Frost flowers are ice crystals that grow on refreezing sea ice leads in Polar Regions by wicking brine from the sea ice surface and accumulating vapor phase condensate. These crystals contain high concentrations of mercury (Hg) and are believed to be a source of reactive halogens, but their role in Hg cycling and impact on the fate of Hg deposited during atmospheric mercury depletion events (AMDEs) are not well understood. We collected frost flowers growing on refreezing sea ice near Barrow, Alaska (U.S.A.) during an AMDE in March 2009 and measured Hg concentrations and Hg stable isotope ratios in these samples to determine the origin of Hg associated with the crystals. We observed decreasing Delta199Hg values in the crystals as they grew from new wet frost flowers (mean Delta199Hg = 0.77 ± 0.13 per mil, 1 s.d.) to older dry frost flowers (mean Delta199Hg = 0.10 ± 0.05 per mil, 1 s.d.). Over the same time period, mean Hg concentrations in these samples increased from 131 ± 6 ng/L (1 s.d.) to 180 ± 28 ng/L (1 s.d.). Coupled with a previous study of Hg isotopic fractionation during AMDEs, these results suggest that Hg initially deposited to the local snowpack was subsequently reemitted during photochemical reduction reactions and ultimately accumulated on the frost flowers. As a result of this process, frost flowers may lead to enhanced local retention of Hg deposited during AMDEs and may increase Hg loading to the Arctic Ocean.
Resumo:
Grey seal, Halichoerus grypus, pups in the breeding colony at Froan, Norway, have a bimodal pattern of early aquatic behaviour. About 40% of the pups spend their time ashore to save energy, which can be allocated to growth or deposition of energy-rich adipose tissue. The other 60% of the pups enter the sea during suckling and the early postweaning period, and disperse to other locations within the breeding colony. Pups may swim distances up to 12 km. Neonatal aquatic dispersal behaviour may lead to increased energy expenditure for thermoregulation and swimming, and thus lead to a low rate of body mass gain during suckling and a high rate of body mass loss after weaning. Thus, we examined relationships between natal aquatic dispersal behaviour and change in body mass (DeltaBM) in suckling and weaned pups. Suckling pups that had dispersed >2000 m had a significantly lower DBM than suckling pups that dispersed <2000 m or that did not disperse. In weaned pups, there were no effects of aquatic dispersal behaviour on DBM. We suggest that the bimodal natal aquatic dispersal behaviour in grey seals at the study site reflects two different strategies for postweaning survival: to stay ashore and get fat, or to take a swim and acquire diving and feeding skills.
Resumo:
Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent's interior, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica's coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4 ± 61 Gt/yr. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132 ± 60 Gt/yr in 2006. In the Peninsula, losses increased by 140% to reach 60 ± 46 Gt/yr in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.
Resumo:
Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (d13C CH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.