960 resultados para Bio-heat equation
Resumo:
A numerical solution of the unsteady boundary layer equations under similarity assumptions is obtained. The solution represents the three-dimensional unsteady fluid motion caused by the time-dependent stretching of a flat boundary. It has been shown that a self-similar solution exists when either the rate of stretching is decreasing with time or it is constant. Three different numerical techniques are applied and a comparison is made among them as well as with earlier results. Analysis is made for various situations like deceleration in stretching of the boundary, mass transfer at the surface, saddle and nodal point flows, and the effect of a magnetic field. Both the constant temperature and constant heat flux conditions at the wall have been studied.
Resumo:
This paper presents the results of a computational study of laminar axisymmetric plumes generated by the simultaneous diffusion of thermal energy and chemical species. Species concentrations are assumed small. The plume is treated as a boundary layer. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy and species are suitably non-dimensionalised. These equations are solved using one time-step-forward explicit finite-difference method. Upwind differencing is employed for convective terms. The results thus obtained are explained in terms of the basic physical mechanisms that govern these flows. They show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Resumo:
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear couple differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.
Resumo:
The axisymmetric steady laminar compressible boundary layer swirling flow of a gas with variable properties in a nozzle has been investigated. The partial differential equations governing the non-similar flow have been transformed into new co-ordinates having finite ranges by means of a transformation which maps an infinite range into a finite one. The resulting equations have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for compressible swirling flow through a convergent conical nozzle. The results indicate that the swirl exerts a strong influence on the longitudinal skin friction, but its effect on the tangential skin friction and heat transfer is comparatively small. The effect of the variation of the density-viscosity product across the boundary layer is appreciable only at low-wall temperature. The results are in good agreement with those of the local-similarity method for small values of the longitudinal distance.
Resumo:
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
A new theoretical equation for interaction parameter in multicomponent metallic solutions is developed using the pseudopotential formalism coupled with the free energy of the hard sphere system. The approximate expression for the pseudopotential term is given in terms of the heat of solution at infinite dilution, to allow easy evaluation of the interaction parameter in various multicomponent systems. This theory has been applied to 23 non-ferrous alloys based on Pb, Sn, Bi and indium. Comparison with the results of previous theoretical calculations using only the hard sphere model suggests that the inclusion of the pseudopotential term yields a quantitatively more correct prediction of interaction parameters in multicomponent metallic solutions. Numerical calculations were also made for 320 Fe-base solutions relevant to steelmaking and the agreement between calculation and experimental data appears reasonable, with 90% reliability in predicting the correct sign.
Resumo:
Viime aikoina ilmastonmuutos, fossiilisten polttoaineiden väheneminen ja niiden hinnan nousu ovat lisänneet merkittävästi maailmanlaajuista kiinnostusta uusiutuviin energiavaroihin. Suomessa uusiutuvien energialähteiden käytössä on jo pitkään panostettu metsäteollisuuden sivutuotevirtana tuottamaan puuperäiseen biomassaan, jota metsäteollisuus käyttää energiantuotantoonsa. Metsäteollisuuden jätevesien käsittelyssä syntyy erilaisia lietteitä, jotka joko uusiokäytetään tai hävitetään polttamalla tai sijoittamalla kaatopaikalle. Erityisesti biolietteiden uusiokäyttö on hankalaa ja kaatopaikkasijoitus tulevaisuudessa mahdotonta tai ainakin kustannuksiltaan kohtuutonta. Käytännössä liete hävitetään polttamalla ja kuivaamalla siitä tulee polttoaine. Lietteiden energiakäyttö on järkevin tapa hävittää jäteliete. Lietteiden korkean vesipitoisuuden vuoksi ne tulee kuitenkin kuivata ennen polttoa. Lietteen kuivaaminen sekundäärienergiavirralla eli metsäteollisuusprosesseissa sivutuotteena muodostuvalla ns. hukkalämmöllä lisää lietteen poltosta saatavaa energiamäärää ja korvaa fossiilisten polttoaineiden käyttöä. Tutkimuksen tavoitteena oli selvittää lietteen kuivaukseen optimaalisin kuoren ja lietteen seossuhde eri kuivausparametrejä vaihdellen. Kokeellinen työ aloitettiin rakentamalla energiatekniikan koehalliin laboratoriokokoluokan kiintopetikuivuri, jossa kuivumista tutkittiin puhaltamalla polttoainepedin läpi lämmitettyä ilmaa. Kuivattavina polttoaineina olivat kuoren ja lietteen seos tai pelkkä kuori ja liete erilaisilla massoilla ja erilaisilla prosenttisilla suhteilla ja erilaisissa lämpötiloissa. Kuivumiskäyrien määritys perustui massanmuutokseen. Koelaitteessa olivat anturit lämpötilan mittausta varten, jotta lämpötila saatiin säädettyä ja seurattua kokeen edellyttämällä tavalla. Lämpötilat ja painonmuutokset tallentuivat koetta tehdessä tietokoneelle. Kuivauskokeet osoittivat, että liete-kuori seos kuivuu hyvin kiintopedissä kun lietteen massaosuus seoksessa on korkeintaan 50 %. Lietteen massaosuuden ollessa tätä suurempi kuivaaminen ei enää ole tehokasta, mikä johtuu luultavasti ilman suuresta kanavoitumisesta kuivauspedissä. Kuorta kuivatessa lämpötilan nosto 50 °C:stä 70 °C:een oli huomattavasti tehokkaampaa kuin 70 °C:stä 90 °C:een, ajallisesti ero oli noin kaksinkertainen.
Resumo:
The characteristics of the separated flow behind a diaphragm over a burning surface are investigated experimentally. This complex problem of practical significance involving recirculation, blowing and combustion reactions is studied in a two-dimensional combustion tunnel. The flame structure, recirculation patterns and heat transfer to the surface are presented for a range of values of free stream and fuel injection velocities as well as for different heights of the diaphragm. The trends of heat transfer vs axial distance are shown to be similar to those resulting from a non-reactive heated stream with a diaphragm. Treating the case of a boundary layer diffusion flame as that corresponding to the zero height of the diaphragm, the heat transfer augmentation due to recirculation is estimated. It is found that at considerable downstream distances (xfh > 3), the heat transfer rates with diaphragm overtake the rates from a developing boundary layer case. Flow visualization studies with particle track photography show that there are many similarities between the reactive and the non-reactive cases.
Resumo:
The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.
Resumo:
An ammonia loop heat pipe (LHP) with a flat plate evaporator is developed and tested. The device uses a nickel wick encased in an aluminum-stainless steel casing. The loop is tested for various heat loads and different sink temperatures, and it demonstrated reliable startup characteristics. Results with the analysis of the experimental observation indicate that the conductance between the compensation chamber and the heater plate can significantly influence the operating temperatures of the LHP. A mathematical model is also presented which is validated against the experimental observations.
Resumo:
Characterization of melting process in a Phase Change Material (PCM)-based heat sink with plate fin type thermal conductivity enhancers (TCEs) is numerically studied in this paper. Detailed parametric investigations are performed to find the effect of aspect ratio of enclosure and the applied heat flux on the thermal performance of the heat sinks. Various non-dimensional numbers, such as Nusselt number (Nu), Rayleigh number (Ra), Stefan number (Ste) and Fourier number (Fo) based on a characteristic length scale, are identified as important parameters. The half fin thickness and the fin height are varied to obtain a wide range of aspect ratios of an enclosure. It is found that a single correlation of Nu with Ra is not applicable for all aspect ratios of enclosure with melt convection taken into account. To find appropriate length scales, enclosures with different aspect ratios are divided into three categories, viz. (a) shallow enclosure, (b) rectangular enclosure and (c) tall enclosure. Accordingly, an appropriate characteristic length scale is identified for each type of enclosure and correlation of Nu with Ra based on that characteristic length scale is developed. (C) 2010 Elsevier Ltd. All rights reserved.