950 resultados para Berlin wall


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared (NIR) imaging was used to observe water vapour flow in a gas-solid fluidized bed reactor. The technique consisted of a broadband light, an optical filter with a bandwidth centred on strong water vapour absorptions, a Vidicon NIR camera, a nozzle from which an optically active mixture of gas and water vapour was trans-illuminated by an NIR beam and collected data of transmittance were normalized to actual optical path. The procedure was applied to a thin fluidized bed reactor with a low aspect ratio of tube to particle diameters (D-1/d(p)) in order to validate the wall effect on flow dynamics and mass transfer during the reduction of ceria-silica by hydrogen. High concentrations of water vapour emerged in the vicinity of the wall when the bed was operated at pseudo-static conditions but disappeared when the bed was run at minimum bubbling conditions. This result shows the capability of optical methods with affordable costs to 2D imaging opaque packed bed by using a spatially resolved probe located at the exit, which is of great benefit for in situ visualization of anisotropic concentrations in packed beds under industrially relevant conditions and thus for elucidation of the underlying reaction mechanism and diffusion interactions. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.

Relevância:

20.00% 20.00%

Publicador: