970 resultados para Bean - Plant residues in soil - Productivity
Resumo:
The effect of soil incorporation of 7 Meliaceae derivatives (6 commercial neem cakes and leaves of Melia azedarach L.) on C and N dynamics and on nutrient availability to micropropagated GF677 rootstock was investigated. In a first laboratory incubation experiment the derivatives showed different N mineralization dynamics, generally well predicted by their C:N ratio and only partly by their initial N concentration. All derivatives increased microbial biomass C, thus representing a source of C for the soil microbial population. Soil addition of all neem cakes (8 g kg-1) and melia leaves (16 g kg-1) had a positive effect on plant growth and increased root N uptake and leaf green colour of micropropagated plants of GF677. In addition, the neem cakes characterized by higher nutrient concentration increased P and K concentration in shoot and leaves 68 days after the amendment. In another experiment, soil incorporation of 15N labeled melia leaves (16 g kg-1) had no effect on the total amount of plant N, however the percentage of melia derived-N of treated plants ranged between 0.8% and 34% during the experiment. At the end of the growing season, about 7% of N added as melia leaves was recovered in plant, while 70% of it was still present in soil. Real C mineralization and the priming effect induced by the addition of the derivatives were quantified by a natural 13C abundance method. The real C mineralization of the derivatives ranged between 22% and 40% of added-C. All the derivatives studied induced a positive priming effect and, 144 days after the amendment, the amount of C primed corresponded to 26% of added-C, for all the derivatives. Despite this substantial priming effect, the C balance of the soil, 144 days after the amendment, always resulted positive.
Resumo:
In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.
Resumo:
Two peptide transporter (PTR) homologs have been isolated from developing seeds of faba bear, (Vicia faba). VfPTR1 was shown to be a functional peptide transporter through complementation of a yeast mutant. Expression patterns of VfPTR1 and VfPTR2 as well as of the amino acid permease VfAAP1 (Miranda et al., 2001) were compared throughout seed development and germination. In developing seeds, the highest levels of VfPTR1 transcripts were reached during midcotyledon development, whereas VfAAP1 transcripts were most abundant during early cotyledon development, before the appearance of storage protein gene transcripts, and were detectable until late cotyledon development. During early germination, VfPTR1 mRNA appeared first in cotyledons and later, during seedling growth, also in axes and roots. Expression of VfPTR2 and VfAAP1 was delayed compared with VfPTR1, and was restricted to the nascent organs of the seedlings. Localization of VfPTR1 transcripts showed that this FTR is temporally and spatially regulated during cotyledon development. In germinating seeds, VfPTR1 mRNA was localized in root hairs and root epidermal cells, suggesting a role in nutrient uptake from the soil. In seedling roots, VfPTR1 was repressed by a dipeptide and by an amino acid, whereas nitrate was without influence.
Resumo:
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.
Resumo:
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important Findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites.Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.
Resumo:
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.
Resumo:
El Zn es un elemento esencial para el crecimiento saludable y reproducción de plantas, animales y humanos. La deficiencia de Zn es una de las carencias de micronutrientes más extendidas en muchos cultivos, afectando a grandes extensiones de suelos en diferentes áreas agrícolas. La biofortificación agronómica de diferentes cultivos, incrementando la concentración de micronutriente Zn en la planta, es un medio para evitar la deficiencia de Zn en animales y humanos. Tradicionalmente se han utilizado fertilizantes de Zn inorgánicos, como el ZnSO4, aunque en los últimos años se están utilizado complejos de Zn como fuentes de este micronutriente, obteniéndose altas concentraciones de Zn soluble y disponible en el suelo. Sin embargo, el envejecimiento de la fuente en el suelo puede causar cambios importantes en su disponibilidad para las plantas. Cuando se añaden al suelo fuentes de Zn inorgánicas, las formas de Zn más solubles pierden actividad y extractabilidad con el paso del tiempo, transformándose a formas más estables y menos biodisponibles. En esta tesis se estudia el efecto residual de diferentes complejos de Zn de origen natural y sintético, aplicados en cultivos previos de judía y lino, bajo dos condiciones de riego distintas (por encima y por debajo de la capacidad de campo, respectivamente) y en dos suelos diferentes (ácido y calizo). Los fertilizantes fueron aplicados al cultivo previo en tres dosis diferentes (0, 5 y 10 mg Zn kg-1 suelo). El Zn fácilmente lixiviable se estimó con la extracción con BaCl2 0,1M. Bajo condiciones de humedad por encima de la capacidad de campo se obtuvieron mayores porcentajes de Zn lixiviado en el suelo calizo que en el suelo ácido. En el caso del cultivo de judía realizado en condiciones de humedad por encima de la capacidad de campo se compararon las cantidades extraídas con el Zn lixiviado real. El análisis de correlación entre el Zn fácilmente lixiviable y el estimado sólo fue válido para complejos con alta movilidad y para cada suelo por separado. Bajo condiciones de humedad por debajo de la capacidad de campo, la concentración de Zn biodisponible fácilmente lixiviable presentó correlaciones positivas y altamente significativas con la concentración de Zn disponible en el suelo. El Zn disponible se estimó con varios métodos de extracción empleados habitualmente: DTPA-TEA, DTPA-AB, Mehlich-3 y LMWOAs. Estas concentraciones fueron mayores en el suelo ácido que en el calizo. Los diferentes métodos utilizados para estimar el Zn disponible presentaron correlaciones positivas y altamente significativas entre sí. La distribución del Zn en las distintas fracciones del suelo fue estimada con diferentes extracciones secuenciales. Las extracciones secuenciales mostraron un descenso entre los dos cultivos (el anterior y el actual) en la fracción de Zn más lábil y un aumento en la concentración de Zn asociado a fracciones menos lábiles, como carbonatos, óxidos y materia orgánica. Se obtuvieron correlaciones positivas y altamente significativas entre las concentraciones de Zn asociado a las fracciones más lábiles (WSEX y WS+EXC, experimento de la judía y lino, respectivamente) y las concentraciones de Zn disponible, estimadas por los diferentes métodos. Con respecto a la planta se determinaron el rendimiento en materia seca y la concentración de Zn en planta. Se observó un aumento del rendimiento y concentraciones con el efecto residual de la dosis mayores (10 mg Zn kg-1) con respecto a la dosis inferior (5 mg Zn 12 kg-1) y de ésta con respecto a la dosis 0 (control). El incremento de la concentración de Zn en todos los tratamientos fertilizantes, respecto al control, fue mayor en el suelo ácido que en el calizo. Las concentraciones de Zn en planta indicaron que, en el suelo calizo, serían convenientes nuevas aplicaciones de Zn en posteriores cultivos para mantener unas adecuadas concentraciones en planta. Las mayores concentraciones de Zn en la planta de judía, cultivada bajo condiciones de humedad por encima de la capacidad de campo, se obtuvieron en el suelo ácido con el efecto residual del Zn-HEDTA a la dosis de 10 mg Zn kg-1 (280,87 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-DTPA-HEDTA-EDTA a la dosis de 10 mg Zn kg-1 (49,89 mg Zn kg-1). En el cultivo de lino, cultivado bajo condiciones de humedad por debajo de la capacidad de campo, las mayores concentraciones de Zn en planta ese obtuvieron con el efecto residual del Zn-AML a la dosis de 10 mg Zn kg-1 (224,75 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-EDTA a la dosis de 10 mg Zn kg-1 (99,83 mg Zn kg-1). El Zn tomado por la planta fue determinado como combinación del rendimiento y de la concentración en planta. Bajo condiciones de humedad por encima de capacidad de campo, con lixiviación, el Zn tomado por la judía disminuyó en el cultivo actual con respecto al cultivo anterior. Sin embargo, en el cultivo de lino, bajo condiciones de humedad por debajo de la capacidad de campo, se obtuvieron cantidades de Zn tomado superiores en el cultivo actual con respecto al anterior. Esta tendencia también se observó, en ambos casos, con el porcentaje de Zn usado por la planta. Summary Zinc is essential for healthy growth and reproduction of plants, animals and humans. Zinc deficiency is one of the most widespread micronutrient deficiency in different crops, and affect different agricultural areas. Agronomic biofortification of crops produced by an increased of Zn in plant, is one way to avoid Zn deficiency in animals and humans Sources with inorganic Zn, such as ZnSO4, have been used traditionally. Although, in recent years, Zn complexes are used as sources of this micronutrient, the provide high concentrations of soluble and available Zn in soil. However, the aging of the source in the soil could cause significant changes in their availability to plants. When an inorganic source of Zn is added to soil, Zn forms more soluble and extractability lose activity over time, transforming into forms more stable and less bioavailable. This study examines the residual effect of different natural and synthetic Zn complexes on navy bean and flax crops, under two different moisture conditions (above and below field capacity, respectively) and in two different soils (acid and calcareous). Fertilizers were applied to the previous crop in three different doses (0, 5 y 10 mg Zn kg-1 soil). The easily leachable Zn was estimated by extraction with 0.1 M BaCl2. Under conditions of moisture above field capacity, the percentage of leachable Zn in the calcareous soil was higher than in acid soil. In the case of navy bean experiment, performed in moisture conditions of above field capacity, amounts extracted of easily leachable Zn were compared with the real leachable Zn. Correlation analysis between the leachable Zn and the estimate was only valid for complex with high mobility and for each soil separately. Under moisture conditions below field capacity, the concentration of bioavailable easily leachable Zn showed highly significant positive correlations with the concentration of available soil Zn. The available Zn was estimated with several commonly used extraction methods: DTPA-TEA, AB-DTPA, Mehlich-3 and LMWOAs. These concentrations were higher in acidic soil than in the calcareous. The different methods used to estimate the available Zn showed highly significant positive correlations with each other. The distribution of Zn in the different fractions of soil was estimated with different sequential extractions. The sequential extractions showed a decrease between the two crops (the previous and current) at the most labile Zn fraction and an increase in the concentration of Zn associated with the less labile fractions, such as carbonates, oxides and organic matter. A positive and highly significant correlation was obtained between the concentrations of Zn associated with more labile fractions (WSEX and WS + EXC, navy bean and flax experiments, respectively) and available Zn concentrations determined by the different methods. Dry matter yield and Zn concentration in plants were determined in plant. Yield and Zn concentration in plant were higher with the residual concentrations of the higher dose applied (10 mg Zn kg-1) than with the lower dose (5 mg Zn kg-1), also these parameters showed higher values with application of this dose than with not Zn application. The increase of Zn concentration in plant with Zn treatments, respect to the control, was greater in the acid soil than in the calcareous. The Zn concentrations in plant indicated that in the calcareous soil, new applications of Zn are desirable in subsequent crops to maintain suitable concentrations in plant. 15 The highest concentrations of Zn in navy bean plant, performed under moisture conditions above the field capacity, were obtained with the residual effect of Zn-HEDTA at the dose of 10 mg Zn kg-1 (280.87 mg Zn kg-1) in the acid soil, and with the residual effect of Zn- DTPA-HEDTA-EDTA at a dose of 10 mg Zn kg-1 (49.89 mg Zn kg-1) in the calcareous soil. In the flax crop, performed under moisture conditions below field capacity, the highest Zn concentrations in plant were obtained with the residual effect of Zn-AML at the dose of 10 mg Zn kg-1 (224.75 Zn mg kg-1) and with the residual effect of Zn-EDTA at a dose of 10 mg Zn kg-1 (99.83 mg Zn kg-1) in the calcareous soil. The Zn uptake was determined as a combination of yield and Zn concentration in plant. Under moisture conditions above field capacity, with leaching, Zn uptake by navy bean decreased in the current crop, respect to the previous crop. However, in the flax crop, under moisture conditions below field capacity, Zn uptake was higher in the current crop than in the previous. This trend is also observed in both cases, with the percentage of Zn used by the plant
Resumo:
Debido al futuro incierto de la mayor parte de los fumigantes edáficos usados actualmente en la Unión Europea, que pueden implicar riesgos para la salud humana/animal y el medio ambiente, es necesario desarrollar programas de manejo integrado para el control de plagas de cultivos. Estos programas se incluyen como obligatorios en el Reglamento (EC) No. 1107/2009. De acuerdo con este Reglamento, es obligatoria la evaluación del riesgo asociado al uso de productos fitosanitarios sobre los organismos edáficos no diana y sus funciones, además de llevar a cabo ensayos con diferentes especies indicadoras para obtener datos de toxicidad que puedan ser usados posteriormente en la evaluación de riesgo. Sin embargo, la baja representatividad de algunas de estas especies indicadoras en el área Mediterránea supone una gran limitación. En esta situación, el Panel Científico de Productos Fitosanitarios y sus Residuos de la Autoridad Europea en Seguridad Alimentaria (EFSA), ha señalado la necesidad de modificar los datos ecotoxicológicos requeridos para evaluar los efectos adversos de los productos fitosanitarios de una manera más integrada, incluyendo criterios funcionales y estructurales mediante organismos como bacterias, hongos, protozoos y nematodos. De este modo, la EFSA ha recomendado el uso de los nematodos en la evaluación de la funcionalidad y estructura del suelo. Los nematodos están globalmente distribuidos y son morfológicamente diversos; esto junto con su gran abundancia y diversidad de respuestas a las perturbaciones edáficas, los convierte en indicadores adecuados del estado del suelo. Puesto que los nematodos interaccionan con muchos otros organismos que participan en diferentes eslabones de la red trófica edáfica, jugando papeles importantes en procesos edáficos esenciales en los agroescosistemas, la diversidad de nematodos es, a menudo, usada como indicador biológico de los efectos de las prácticas agrícolas en el estado del suelo. En los últimos años, diferentes índices basados en la comunidad nematológica han facilitado la interpretación de datos complejos sobre la ecología del suelo. Los índices de la red trófica edáfica, basados en la abundancia de grupos funcionales definidos como grupos C-P y grupos tróficos, permiten la evaluación de la funcionalidad de la red trófica edáfica. Por otra parte, la dificultad en la identificación taxonómica de nematodos para explicar su uso limitado como indicadores ecológicos, es ampliamente discutida, y existe cierta controversia en cuanto a la eficacia de los diferentes métodos de identificación de nematodos. Se argumenta que la identificación morfológica es difícil y puede llevar mucho tiempo debido a la falta de expertos especializados, y se afirma que las técnicas moleculares pueden resolver algunas limitaciones de las técnicas morfológicas como la identificación de juveniles. Sin embargo, los métodos de identificación molecular tienen también limitaciones; la mayoría de las bases de datos de secuencias de ADN están fuertemente orientadas hacia los nematodos fitoparásitos, los cuales representan sólo una parte de la comunidad edáfica de nematodos, mientras que hay poca información disponible de nematodos de vida libre a pesar de representar la mayoría de los nematodos edáficos. Este trabajo se centra en el estudio de los efectos de fumigantes edáficos en la funcionalidad del suelo a través del uso de diferentes indicadores basados en la comunidad de nematodos, como los índices de la red trófica, índices de diversidad, abundancia de los taxones más relevantes etc. También se han analizado otros indicadores funcionales relacionados con la supresividad edáfica, el ciclo de nutrientes o la actividad de la microfauna del suelo. En el capítulo 1, la diversidad de nematodos estudiada en una explotación comercial de fresa y sus alrededores durante dos campañas consecutivas en el suroeste español, fue baja en los suelos fumigados con fumigantes químicos ambas campañas y, aunque se observó una recuperación a lo largo de la campaña en la zona tratada, los suelos fumigados mostraron una condición perturbada permanente. La comunidad de nematodos estuvo más asociada al ciclo de nutrientes en la zona sin cultivar que en los suelos cultivados, y se observó poca relación entre la biomasa de las plantas y la estructura de la comunidad de nematodos. Los surcos sin tratar dentro de la zona de cultivo funcionaron como reservorio tanto de nematodos fitoparásitos como beneficiosos; sin embargo estas diferencias entre los surcos y los lomos de cultivo no fueron suficientes para mantener la supresividad edáfica en los surcos. Los suelos tratados fueron menos supresivos que los suelos sin tratar, y se observaron correlaciones positivas entre la supresividad edáfica y la estructura de la red trófica edáfica y la diversidad de nematodos. En el capítulo 2, se evaluaron los efectos de dos pesticidas orgánicos con efecto nematicida y dos nematicidas convencionales sobre las propiedades físico químicas del suelo, la diversidad de nematodos y la biomasa de las plantas en condiciones experimentales en dos tipos de suelo: suelos agrícolas poco diversos y suelos provenientes de una zona de vegetación natural muy diversos. El mayor efecto se observó en el tratamiento con neem, el cual indujo un gran incremento en el número de dauerlarvas en los suelos pobres en nutrientes, mientras que el mismo tratamiento indujo un incremento de poblaciones de nematodos bacterívoros, más estables y menos oportunistas, en los suelos del pinar ricos en materia orgánica. En el capítulo 3, se comparó la eficacia de métodos moleculares (TRFLP, Terminal Restriction Fragment Length Polymorphism) y morfológicos (microscopía de alta resolución) para la identificación de diferentes comunidades denematodos de España e Irlanda. Se compararon estadísticamente las diferencias y similitudes en la diversidad de nematodos, otros indicadores ecológicos y de la red trófica edáfica. Las identificaciones mediante el uso de TRFLP sólo detectó un porcentaje de los taxones presentes en las muestras de suelo identificadas morfológicamente, y los nematodos omnívoros y predadores no fueron detectados molecularmente en nuestro estudio. Los índices calculados en base a los nematodos micróboros mostraron más similitud cuando se identificaron morfológica y molecularmente que los índices basados en grupos tróficos más altos. Nuestros resultados muestran que, al menos con la técnica usada en este estudio, la identificación morfológica de nematodos es una herramienta fiable y más precisa que la identificación molecular, puesto que en general se obtiene una mayor resolución en la identificación de nematodos. En el capítulo 4, se estudiaron también los efectos de los nematicidas químicos sobre la comunidad de nematodos y la biomasa de las plantas en condiciones experimentales de campo, donde se aplicaron en una rotación de cultivo judía-col durante un ciclo de cultivo. Se aplicaron dos tipos de enmiendas orgánicas con el objetivo de mitigar el efecto negativo de los productos fitosanitarios sobre la diversidad edáfica. El efecto de los nematicidas sobre las propiedades del suelo y sobre la comunidad de nematodos fue más agudo que el efecto de las enmiendas. La incorporación de los restos de cosecha al final del ciclo de cultivo de la judía tuvo un gran efecto sobre la comunidad de nematodos, y aunque el número total de nematodos incrementó al final del experimento, se observó una condición perturbada permanente de la red trófica edáfica a lo largo del experimento. ABSTRACT Due to the uncertain future of the soil fumigants most commonly used in the EU, that might involve risks for human/animal health and the environment, there is a need to develop new integrated pest management programs, included as mandatory in the Regulation (EC) No. 1107/2009, to control crop diseases. According to this Regulation, evaluating the risk associated to the use of the plant production products (PPP) on non-target soil fauna and their function, and developing assays with different indicator species to obtain toxicity data to be used in the risk evaluation is mandatory. However, the low representativeness of some of these indicator species in the Mediterranean area is a relevant limitation. In this situation, the Scientific Panel of Plant Protection Products and their Residues of the European Food Safety Authority (EFSA) has pointed out the necessity of modifying the ecotoxicological data set required to evaluate non-target effects of PPP in a more integrated way, including structural and functional endpoints with organism such as bacteria, fungi, protists and nematodes. Thus, EFSA has recommended the use of nematodes in the assessment of the functional and structural features of the soil. Nematodes are globally distributed and morphologically diverse, and due to their high abundance and diversity of responses to soil disturbance, they are suitable indicators of the soil condition. Since nematodes interact with many other organisms as participants in several links of the soil food web, playing important roles in essential soil processes in agroecosystems, nematode diversity is often used as a biological indicator of the effects of agricultural practices on soil condition. In the last years, various indices based on soil nematode assemblages, have facilitated the interpretation of complex soil ecological data. Soil food web indices based on the abundances of functional guilds defined by C-P groups and trophic groups, permit evaluating soil food web functioning. On the other hand, the difficulty of nematode taxonomical identification is commonly argued to explain their limited used as ecological indicators, and there is a certain controversy in terms of the efficacy of various nematode identification methods. It is argued that the morphological identification is difficult and time consuming due to the lack of specialist knowledge, and it is claimed that molecular techniques can solve some limitations of morphological techniques such as the identification of juveniles. Nevertheless, molecular identification methods are limited too, since most of the DNA-based databases are strongly oriented towards plant-parasitic nematodes that represent only a fraction of the soil nematode community, while there is little information available on free-living nematodes, which represent most soil nematodes. This work focuses on the study of the effects of soil fumigants on soil functioning through the use of different indicators based on soil nematode community as soil food web indices, diversity indices, the abundance of more relevant taxa etc. Other functional indicators related to soil suppressiveness, nutrient cycling, or the activity of soil microfauna have been also studied. In chapter 1, nematode diversity assessed in a commercial strawberry farm and its surroundings for two consecutive growing seasons in southern Spain, was low in fumigated soils with chemical pesticides throughout both seasons and, although yearly recovery occurred within the treated fields, fumigated soils showed a permanent perturbed condition. The nematode community was more closely associated to nutrient cycling in the non-cropped than in the cropped soils, and the link between plant biomass and nematode community structure was weak. Non-treated furrows within the treated fields were a reservoir of both beneficial and plant-parasitic nematodes, but such difference between furrows and beds was not enough to maintain more suppressive soil assemblages in the furrows. Treated soils were less suppressive than unmanaged soils, and there was a positive and significant correlation between soil suppressiveness and soil food web structure and diversity. In chapter 2, the effects of two organic pesticides with nematicide effect and two chemical nematicides on soil physicalchemical properties, soil nematode diversity and plant biomass in experimental conditions were assessed in two types of soils: low diversity soils from an agricultural farm, and high diversity soils from a natural vegetation area. The larger effect was observed on the neem treatment, which induced a large boost of dauer juveniles in the nutrient-depleted soil, while the same treatment induced the increase of more stable, less opportunistic, populations of generalist bacterivore nematodes in the pine forest soil, rich in organic matter. In chapter 3, comparison of the efficiency of molecular (TRFLP, Terminal Restriction Fragment Length Polymorphism) and morphological (microscopy at high magnification) identification methods was carried out in different nematode communities from five sites of different land uses in Spain and Ireland. Differences and similarities on nematode diversity and other ecological and soil food web indices assessed by both methods, were statistically compared. Molecular identification with TRFLP only detected a percentage of the taxa present in the soil samples identified morphologically, and omnivores and predators were not detected molecularly in our study. Indices involving microbial feeding nematodes were more similar between identification methods than indices involving higher trophic links. Our results show that, at least with the technique used in this study, identifying nematodes morphologically is a reliable and more precise identification tool than molecular identification, since a higher taxonomic resolution is in general obtained compared to TRFLP. In chapter 4, the effect of chemical nematicides on nematode community descriptors and plant biomass was also studied in field conditions in an experimental area in which dazomet and dimethyl disulfide was applied in a bean-cabbage rotation system for a single season. Organic amendments were incorporated into the soil with the aim of mitigate the negative effect of the pesticides on soil diversity. The effect of the nematicides was much more noticeable than the effect of the amendments on soil properties and nematode community descriptors. The incorporation of bean crop residues into the soil at the end of bean crop cycle affected soil nematode community descriptors to a great extent, and although total number of nematodes increased at the end of the experiment, a permanent perturbed soil food web condition was observed along the experiment.
Resumo:
Soil porosity is the fraction of total volume occupied by pores or voids measured at matric potential 0. To measure soil porosity, soil samples were taken from each plot using sample rings with an internal diameter of 57 mm and height of 40.5 mm (inner volume of Vs=100 cm3). The samples were placed on a sand bed box with water level set to allow saturation of the samples with water. After 48 h the samples were weighed (ms), oven dried at 105 °C and weighed again to determine the dry weight (md). We calculated soil porosity (n [%]) using the density of water (?w=1 g cm?3), n=100 ? (mw-md) / (?w?Vs). To account for the spatial variation of soil properties, three replicates were taken per plot, approximately 2, 3 and 4 weeks after the flood that occurred at the field site during June 2013. Data are the average soil porosity values per plot. All data where measured in the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing.
Resumo:
Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.
Resumo:
Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.
Resumo:
The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i) charcoal feeding on manure composition, and (ii) charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.). To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration); second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001) from 45.2% (0% AC) to 60.2% (9% AC) with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001) from 0% AC (N: 2.5%, P: 1.5%, K: 0.8%) to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%). Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.
Soil management systems for sustainable melon cropping in the Submedian of the São Francisco Valley.
Resumo:
Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.