959 resultados para Bayesian inference on precipitation
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.
Resumo:
Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.
Resumo:
We present experimental and theoretical analyses of data requirements for haplotype inference algorithms. Our experiments include a broad range of problem sizes under two standard models of tree distribution and were designed to yield statistically robust results despite the size of the sample space. Our results validate Gusfield's conjecture that a population size of n log n is required to give (with high probability) sufficient information to deduce the n haplotypes and their complete evolutionary history. The experimental results inspired our experimental finding with theoretical bounds on the population size. We also analyze the population size required to deduce some fixed fraction of the evolutionary history of a set of n haplotypes and establish linear bounds on the required sample size. These linear bounds are also shown theoretically.
Resumo:
There is recent interest in the generalization of classical factor models in which the idiosyncratic factors are assumed to be orthogonal and there are identification restrictions on cross-sectional and time dimensions. In this study, we describe and implement a Bayesian approach to generalized factor models. A flexible framework is developed to determine the variations attributed to common and idiosyncratic factors. We also propose a unique methodology to select the (generalized) factor model that best fits a given set of data. Applying the proposed methodology to the simulated data and the foreign exchange rate data, we provide a comparative analysis between the classical and generalized factor models. We find that when there is a shift from classical to generalized, there are significant changes in the estimates of the structures of the covariance and correlation matrices while there are less dramatic changes in the estimates of the factor loadings and the variation attributed to common factors.
Resumo:
This paper uses an infinite hidden Markov model (IIHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.
Disentangling the effects of key innovations on the diversification of Bromelioideae (bromeliaceae).
Resumo:
The evolution of key innovations, novel traits that promote diversification, is often seen as major driver for the unequal distribution of species richness within the tree of life. In this study, we aim to determine the factors underlying the extraordinary radiation of the subfamily Bromelioideae, one of the most diverse clades among the neotropical plant family Bromeliaceae. Based on an extended molecular phylogenetic data set, we examine the effect of two putative key innovations, that is, the Crassulacean acid metabolism (CAM) and the water-impounding tank, on speciation and extinction rates. To this aim, we develop a novel Bayesian implementation of the phylogenetic comparative method, binary state speciation and extinction, which enables hypotheses testing by Bayes factors and accommodates the uncertainty on model selection by Bayesian model averaging. Both CAM and tank habit were found to correlate with increased net diversification, thus fulfilling the criteria for key innovations. Our analyses further revealed that CAM photosynthesis is correlated with a twofold increase in speciation rate, whereas the evolution of the tank had primarily an effect on extinction rates that were found five times lower in tank-forming lineages compared to tank-less clades. These differences are discussed in the light of biogeography, ecology, and past climate change.
Resumo:
The Conservative Party emerged from the 2010 United Kingdom General Election as the largest single party, but their support was not geographically uniform. In this paper, we estimate a hierarchical Bayesian spatial probit model that tests for the presence of regional voting effects. This model allows for the estimation of individual region-specic effects on the probability of Conservative Party success, incorporating information on the spatial relationships between the regions of the mainland United Kingdom. After controlling for a range of important covariates, we find that these spatial relationships are significant and that our individual region-specic effects estimates provide additional evidence of North-South variations in Conservative Party support.
Resumo:
Report for the scientific sojourn carried out at the Department of Freshwater Ecology, National Environmetal Research Institute, Denmark, from 2006 to 2008. The main objective of the project was to reconstruct photosynthetic organism community composition using pigmentbased methods and to study their response to natural (e.g. climate) or anthropogenic (e.g. eutrophication) perturbations that took place in the system over time. We performed a study in different locations and at different temporal scales. We analysed the pigment composition in a short sediment record (46 cm sediment depth) of a volcanic lake (Lake Furnas) in the Azores Archipelago (Portugal). The lake has been affected during the last century by successive fish introductions. The specific objective was to reconstruct the lake’s trophic state history and to assess the role of land-use, climate and fish introductions in structuring the lake community. Results obtained suggested that whereas trophic cascade and changes in nutrient concentrations have some clear effects on algal and microbial assemblages, interpreting the effects of changes in climate are not straightforward. This is probably related with the rather constant precipitation in the Azores Islands during the studied period. We also analysed the pigment composition in a long sediment record (1800 cm sediment depth) of Lake Aborre (Denmark) covering ca. 8kyr of lake history. The specific objective was to describe changes in lake primary production and lake trophic state over the Holocene and to determine the photosynthetic organisms involved. Results suggested that external forcing (i.e. land use changes) was responsible of erosion and nutrient run off to the lake that contributed to the reported changes in lake primary production along most of the Holocene.
Resumo:
In this study we elicit agents’ prior information set regarding a public good, exogenously give information treatments to survey respondents and subsequently elicit willingness to pay for the good and posterior information sets. The design of this field experiment allows us to perform theoretically motivated hypothesis testing between different updating rules: non-informative updating, Bayesian updating, and incomplete updating. We find causal evidence that agents imperfectly update their information sets. We also field causal evidence that the amount of additional information provided to subjects relative to their pre-existing information levels can affect stated WTP in ways consistent overload from too much learning. This result raises important (though familiar) issues for the use of stated preference methods in policy analysis.
Resumo:
This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.