929 resultados para Bayes theorem
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case
Resumo:
Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to the nucleon-nucleon scattering phase shifts. The differences between these interactions in describing properties of nuclear matter are investigated. Various contributions to the total energy are evaluated employing the Hellmann-Feynman theorem. Special attention is paid to the two-nucleon correlation functions derived from these interactions. Differences in the predictions of the various interactions can be traced back to the inclusion of nonlocal terms.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
Die Arbeit hat zum Ziel, die Beziehungen der Bewohnerinnen und Bewohner ihres neuen Stadtteils zu beobachten und zu erklären. Der Verfasser ist dabei teilnehmender Beobachter, da er seit über acht Jahren als Quartiersarbeiter in diesem Stadtteil tätig ist. Hintergrund der Tätigkeit des Verfassers und seiner Arbeit ist die Kritik an den Trabantenstädten der 1970er Jahre in Deutschland. Im weiteren Verlauf verfolgt die Arbeit einem soziologisch theoretischen Ansatz. Handlungen, Zeichen, Symbole, Konflikte, Distanzen und Prozesse der sozialen Durchmischungen werden in Bezug zu einzelnen Theorem gesehen. Der Handlungsansatz, der Milieuansatz, die Raumtheorien, Integration und Exklusion sind die fünf theoretischen Perspektiven. Diese werden jeweils zunächst auf Grundlage der wissenschaftlichen Literatur dargestellt, um dann einzelne Beobachtungen diesen jeweiligen Rahmen zuzuordnen. Neue Stadtteile sind in den letzten Jahren in Deutschland nicht viele entstanden. Zu viele negative Erfahrungen machten die Städte, die in 60er und 70er Jahren des 20 Jahrhunderts Trabenten- oder Satellitenstädte am Stadtrand errichteten. Die Stadt Freiburg war eine der ersten Städte, die Anfang der 90er Jahre wieder versucht einen neuen urbanen Stadtteil für 10 – 12 000 Einwohner auf der grünen Wiese zu planen und zu bauen. Die Leitfrage war darum, wie kann eine ähnlich problematische Entwicklung, wie sie die vielen anderen Neubaustadtteile genommen haben, im Stadtteil Rieselfeld verhindert werden. Vor diesem Hintergrund beauftragte die Stadt Freiburg ein Konzept zu unterstützen, dass neben dem Bau der Häuser und der Infrastruktur auch die Entsehung des sozialen und kulturellen Lebens fördern sollte. Die Trägerschaft für dieses Projekt „Quartiersaufbau Rieselfeld“ wurde der Kontaktstelle für praxisorientierte Forschung e. V., der Forschungsstelle der Evangelischen Fachhochschule Freiburg für Sozialwesen, für den Zeitraum von 1996 bis 2003 übertragen. Dieses Stadtentwicklungsprojekt war auch Arbeitgeber für den Verfasser dieser Arbeit. In den vorliegenden Text fliesen daher auch viele Alltagserfahrungen und auch biographische Anteile ein. Diese Arbeit will als eine sozialtheoretische Reflektion verstanden werden, die als Rahmen für lokalisierte empirische Beobachtungen dienen soll. Dies gewährleistete die absolute Nähe zu den Geschehnissen vor Ort, die Entwicklung im alltäglichen Leben mit den BewohnerInnen zu erleben, erschwerte aber die Distanz zur Reflexion dieses Prozesses. Aus dieser Nähe entwickelte sich im Lauf der Zeit, die Frage wie eigen sich die Bewohnerinnen und Bewohner ihren Stadtteil an. Dieses Interesse steht quasi über den alltäglichen sozialarbeiterischen Aufgaben und Herausforderungen. Die Hauptthese dieser Arbeit ist, dass sich die Aneignung des neuen Stadtteils durch einen ständigen Machtkampf, der auf den unterschiedlichsten Ebenen ausgetragen wird, vollzieht. Der Kern der Argumentation besteht neben theoretischen Überlegungen aus alltagstypischen Beobachtungen, die der Verfasser du Zusammenfassend orientiert sich die vorliegende Arbeit als machtsoziologischer Versuch an der genau verorteten Lokalisierung ihrer Produzenten, die sich im Laufe der letzten sieben Jahre herausgebildet und räumlich lokalisiert haben.
Resumo:
Der in dieser Arbeit wesentliche Fokus ist die Realisierung eines anwendungsbezogenen Konzeptes zur Förderung stochastischer Kompetenzen im Mathematikunterricht, die sich auf Entscheiden und Urteilen unter Unsicherheit beziehen. Von zentraler Bedeutung ist hierbei die alltagsrelevante Kompetenz, mit Problemen um bedingte Wahrscheinlichkeiten und Anwendungen des Satzes von Bayes umgehen zu können, die i.w.S. mit „Bayesianischem Denken“ bezeichnet wird. Die historische und theoretische Grundlage der Arbeit sind kognitionspsychologische Erkenntnisse zum menschlichen Urteilen unter Unsicherheit: Intuitive Formen probabilistischen Denkens basieren auf Häufigkeitsanschauungen (z.B. Piaget & Inhelder, 1975; Gigerenzer, 1991). Meine didaktischen Analysen ergaben aber, dass der Umgang mit Unsicherheit im üblichen Stochastikunterricht nach einer häufigkeitsbasierten Einführung des Wahrscheinlichkeitsbegriffes (der ja bekanntlich vielfältige Interpretationsmöglichkeiten aufweist) nur noch auf Basis der numerischen Formate für Wahrscheinlichkeiten (z.B. Prozentwerte, Dezimalbrüche) und entsprechenden Regeln gelehrt wird. Damit werden m.E. grundlegende Intuitionen von Schülern leider nur unzureichend beachtet. Das in dieser Arbeit detailliert entwickelte „Didaktische Konzept der natürlichen Häufigkeiten“ schlägt somit die konsequente Modellierung probabilistischer Probleme mit Häufigkeitsrepräsentationen vor. Auf Grundlage empirischer Laborbefunde und didaktischer Analysen wurde im Rahmen der Arbeit eine Unterrichtsreihe „Authentisches Bewerten und Urteilen unter Unsicherheit“ für die Sekundarstufe I entwickelt (Wassner, Biehler, Schweynoch & Martignon, 2004 auch als Band 5 der KaDiSto-Reihe veröffentlicht). Zum einen erfolgte eine Umsetzung des „Didaktischen Konzeptes der natürlichen Häufigkeiten“, zum anderen wurde ein Zugang mit hohem Realitätsbezug verwirklicht, in dem so genannte „allgemeinere Bildungsaspekte“ wie Lebensvorbereitung, eigenständige Problemlösefähigkeit, kritischer Vernunftgebrauch, Sinnstiftung, motivationale Faktoren etc. wesentliche Beachtung fanden. Die Reihe wurde auch im Rahmen dieser Arbeit in der Sekundarstufe I (fünf 9. Klassen, Gymnasium) implementiert und daraufhin der Unterrichtsgang detailliert bewertet und analysiert. Diese Arbeit stellt die Dissertation des Verfassers dar, die an der Universität Kassel von Rolf Biehler betreut wurde. Sie ist identisch mit der Erstveröffentlichung 2004 im Franzbecker Verlag, Hildesheim, der der elektronischen Veröffentlichung im Rahmen von KaDiSto zugestimmt hat.
Resumo:
Die vorliegende Unterrichtsreihe basiert auf zwei grundlegenden Vorstellungen zum Lernen und Lehren von Wahrscheinlichkeitsrechnung für Anfänger in der Sekundarstufe I. Zum einen ist die grundsätzliche Überzeugung der Autoren, dass ein sinnvoller und gewinnbringender Unterricht in Stochastik über den aufwendigeren Weg möglichst authentischer und konkreter Anwendungen im täglichen Leben gehen sollte. Demzufolge reicht eine Einkleidung stochastischer Probleme in realistisch wirkende Kontexte nicht, sondern es sollte eine intensive Erarbeitung authentischer Problemstellungen, z.B. mit Hilfe von realen Medientexten, erfolgen. Die Schüler sollen vor allem lernen, reale Probleme mathematisch zu modellieren und gefundene mathematische Ergebnisse für die reale Situation zu interpretieren und kritisch zu diskutieren. Eine weitere Besonderheit gegenüber traditionellen Zugängen zur Wahrscheinlichkeitsrechnung basiert auf kognitionspsychologischen Ergebnissen zur menschlichen Informationsverarbeitung. Durch eine Serie von Studien wurde gezeigt, dass Menschen – und natürlich auch Schüler – große Probleme haben, mit Wahrscheinlichkeiten (also auf 1 normierte Maße) umzugehen. Als viel einfacher und verständnisfördernder stellte sich die kognitive Verarbeitung von Häufigkeiten (bzw. Verhältnissen von natürlichen Zahlen) heraus. In dieser Reihe wird deshalb auf eine traditionelle formale Einführung der Bayesschen Regel verzichtet und es werden spezielle, auf Häufigkeiten basierende Hilfsmittel zur Lösungsfindung verwendet. Die erwähnten Studien belegen den Vorteil dieser Häufigkeitsdarstellungen gegenüber traditionellen Methoden im Hinblick auf den sofortigen und insbesondere den längerfristigen Lernerfolg (vgl. umfassend zu diesem Thema C. Wassner (2004). Förderung Bayesianischen Denkens, Hildesheim: Franzbecker, http://nbn-resolving.org/urn:nbn:de:hebis:34-2006092214705). Die vorliegende Schrift wurde zuerst im Jahre 2004 als Anhang zur o.g. Schrift bei Franzbecker Hildesheim veröffentlicht. Der Verlag hat einer elektronischen Veröffentlichung in der KaDiSto-Reihe zugestimmt.
Resumo:
The object of research presented here is Vessiot's theory of partial differential equations: for a given differential equation one constructs a distribution both tangential to the differential equation and contained within the contact distribution of the jet bundle. Then within it, one seeks n-dimensional subdistributions which are transversal to the base manifold, the integral distributions. These consist of integral elements, and these again shall be adapted so that they make a subdistribution which closes under the Lie-bracket. This then is called a flat Vessiot connection. Solutions to the differential equation may be regarded as integral manifolds of these distributions. In the first part of the thesis, I give a survey of the present state of the formal theory of partial differential equations: one regards differential equations as fibred submanifolds in a suitable jet bundle and considers formal integrability and the stronger notion of involutivity of differential equations for analyzing their solvability. An arbitrary system may (locally) be represented in reduced Cartan normal form. This leads to a natural description of its geometric symbol. The Vessiot distribution now can be split into the direct sum of the symbol and a horizontal complement (which is not unique). The n-dimensional subdistributions which close under the Lie bracket and are transversal to the base manifold are the sought tangential approximations for the solutions of the differential equation. It is now possible to show their existence by analyzing the structure equations. Vessiot's theory is now based on a rigorous foundation. Furthermore, the relation between Vessiot's approach and the crucial notions of the formal theory (like formal integrability and involutivity of differential equations) is clarified. The possible obstructions to involution of a differential equation are deduced explicitly. In the second part of the thesis it is shown that Vessiot's approach for the construction of the wanted distributions step by step succeeds if, and only if, the given system is involutive. Firstly, an existence theorem for integral distributions is proven. Then an existence theorem for flat Vessiot connections is shown. The differential-geometric structure of the basic systems is analyzed and simplified, as compared to those of other approaches, in particular the structure equations which are considered for the proofs of the existence theorems: here, they are a set of linear equations and an involutive system of differential equations. The definition of integral elements given here links Vessiot theory and the dual Cartan-Kähler theory of exterior systems. The analysis of the structure equations not only yields theoretical insight but also produces an algorithm which can be used to derive the coefficients of the vector fields, which span the integral distributions, explicitly. Therefore implementing the algorithm in the computer algebra system MuPAD now is possible.
Resumo:
It is well known that Stickelberger-Swan theorem is very important for determining reducibility of polynomials over a binary field. Using this theorem it was determined the parity of the number of irreducible factors for some kinds of polynomials over a binary field, for instance, trinomials, tetranomials, self-reciprocal polynomials and so on. We discuss this problem for type II pentanomials namely x^m +x^{n+2} +x^{n+1} +x^n +1 \in\ IF_2 [x]. Such pentanomials can be used for efficient implementing multiplication in finite fields of characteristic two. Based on the computation of discriminant of these pentanomials with integer coefficients, it will be characterized the parity of the number of irreducible factors over IF_2 and be established the necessary conditions for the existence of this kind of irreducible pentanomials.
Resumo:
Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.
Resumo:
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________
Resumo:
The method of Least Squares is due to Carl Friedrich Gauss. The Gram-Schmidt orthogonalization method is of much younger date. A method for solving Least Squares Problems is developed which automatically results in the appearance of the Gram-Schmidt orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least Squares Problems.
Resumo:
Diese Arbeit behandelt die Problemstellung der modellbasierten Fehlerdiagnose für Lipschitz-stetige nichtlineare Systeme mit Unsicherheiten. Es wird eine neue adaptive Fehlerdiagnosemethode vorgestellt. Erkenntnisse und Verfahren aus dem Bereich der Takagi-Sugeno (TS) Fuzzy-Modellbildung und des Beobachterentwurfs sowie der Sliding-Mode (SM) Theorie werden genutzt, um einen neuartigen robusten und nichtlinearen TS-SM-Beobachter zu entwickeln. Durch diese Zusammenführung lassen sich die jeweiligen Vorteile beider Ansätze miteinander kombinieren. Bedingungen zur Konvergenz des Beobachters werden als lineare Matrizenungleichungen (LMIs) abgeleitet. Diese Bedingungen garantieren zum einen die Stabilität und liefern zum anderen ein direktes Entwurfsverfahren für den Beobachter. Der Beobachterentwurf wird für die Fälle messbarer und nicht messbarer Prämissenvariablen angegeben. Durch die TS-Erweiterung des in dieser Arbeit verwendeten SM-Beobachters ist es möglich, den diskontinuierlichen Rückführterm mithilfe einer geeigneten kontinuierlichen Funktion zu approximieren und dieses Signal daraufhin zur Fehlerdiagnose auszuwerten. Dies liefert eine Methodik zur Aktor- und Sensorfehlerdiagnose nichtlinearer unsicherer Systeme. Gegenüber anderen Ansätzen erlaubt das Vorgehen eine quantitative Bestimmung und teilweise sogar exakte Rekonstruktion des Fehlersignalverlaufs. Darüber hinaus ermöglicht der Ansatz die Berechnung konstanter Fehlerschwellen direkt aus dem physikalischen Vorwissen über das betrachtete System. Durch eine Erweiterung um eine Betriebsphasenerkennung wird es möglich, die Schwellenwerte des Fehlerdiagnoseansatzes online an die aktuelle Betriebsphase anzupassen. Hierdurch ergibt sich in Betriebsphasen mit geringen Modellunsicherheiten eine deutlich erhöhte Fehlersensitivität. Zudem werden in Betriebsphasen mit großen Modellunsicherheiten Falschalarme vermieden. Die Kernidee besteht darin, die aktuelle Betriebsphase mittels eines Bayes-Klassikators in Echtzeit zu ermitteln und darüber die Fehlerschwellen an die a-priori de nierten Unsicherheiten der unterschiedlichen Betriebsphasen anzupassen. Die E ffektivität und Übertragbarkeit der vorgeschlagenen Ansätze werden einerseits am akademischen Beispiel des Pendelwagens und anderseits am Beispiel der Sensorfehlerdiagnose hydrostatisch angetriebener Radlader als praxisnahe Anwendung demonstriert.