977 resultados para Bacterial cells
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.
Resumo:
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
Resumo:
The rhizosphere is a niche exploited by a wide variety of bacteria. The expression of heterologous genes by plants might become a factor affecting the structure of bacterial communities in the rhizosphere. In a greenhouse experiment, the bacterial community associated to transgenic eucalyptus, carrying the Lhcb1-2 genes from pea (responsible for a higher photosynthetic capacity), was evaluated. The culturable bacterial community associated to transgenic and wild type plants were not different in density, and the Amplified Ribosomal DNA Restriction Analysis (ARDRA) typing of 124 strains revealed dominant ribotypes representing the bacterial orders Burkholderiales, Rhizobiales, and Actinomycetales, the families Xanthomonadaceae, and Bacillaceae, and the genus Mycobacterium. Principal Component Analysis based on the fingerprints obtained by culture-independent Denaturing Gradient Gel Electrophoresis analysis revealed that Alphaproteobacteria, Betaproteobacteria and Actinobacteria communities responded differently to plant genotypes. Similar effects for the cultivation of transgenic eucalyptus to those observed when two genotype-distinct wild type plants are compared.
Resumo:
Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.
Resumo:
The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.
Resumo:
The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of So Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (`universal` Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.
Resumo:
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1 Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg(-1) dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg(-1) of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg(-1) of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha(-1) of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bulk milk was collected from 100 farms throughout the year and analysed after storage for either 24, 48 or 72 h, using flow cytometry. The total bacterial counts obtained by two methods - flow cytometry and standard plate count were compared and the conversion relationship between them was assessed: the results showed no effect of the age of the samples relationship between these two methods.
Resumo:
Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic-suboxic), Bg (suboxic), Cri (anoxic with low concentration of pyrite Fe) and Cr-2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr-2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr-2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr-1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr-2 were related to Deltaproteo-bacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr-2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
Metalloproteinases, especially metal loprotemase-2 (MMP-2), are known for their role in the degradation of the extracellular matrix. Nevertheless, a thorough understanding of MMP-2 expression in neoplastic lesions of the uterine cervix has yet to be accomplished. This study aimed to analyze the MMP-2 expression in cervical intraepithelial neoplasia III (CIN3) and in cervical squamous cell carcinoma, in tumor cells and adjacent stromal cells. MMP-2 expression was assessed by an immunohistochernical technique. MMP-2 expression was greater in the stromal cells of invasive carcinomas than in CIN3 (p < 0.0001). MMP-2 expression in stromal cells correlates with the clinical stage, gradually increasing as the tumor progresses (p = 0.04). This study corroborates that stromal cells play an important role in tumor invasion and progression, mediated by the progressive enhancement of MMP-2 expression from CIN3 to advanced invasive tumor. The intense MMP-2 expression most probably is associated with poor tumor prognosis.
Resumo:
Important features of the enteroinvasive Escherichia coli (EIEC) phenotype and gene expression likely to confer EIEC with a lower ability to cause disease than Shigella flexneri were described here for the first time. To confirm the lower pathogenicity of EIEC, we have analyzed the keratoconjunctivitis developed in guinea-pigs with EIEC or S. flexneri. Shigella flexneri induced a more pronounced proinflammatory response, whereas EIEC induced a mild form of the disease. EIEC showed a significantly less efficient cell-to-cell Caco-2 dissemination when compared with S. flexneri. Plaques formed by EIEC during intercellular spreading were four times smaller than those formed by S. flexneri. At the molecular level, the lower expression of virulence genes by EIEC during infection of Caco-2 cells highlighted the importance of effective gene transcription for bacterial pathogenicity.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.