1000 resultados para Bachelor Thesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se desarrolla un estudio de todas las herramientas necesarias para llegar al teorema de los ceros de Hilbert el cual luego se demuestra en sus formas débil y fuerte. Se introducen los conceptos básicos relacionados con los anillos noetherianos y las variedades algebraicas afines que son fundamentales para el estudio del teorema de los ceros de Hilbert. Es por ello que estudiamos detenidamente el concepto de ideal primo e ideal primario, como también las distintas operaciones entre ideales, en particular la descomposición primaria de ideales. En seguida se desarrollan las demostraciones de algunos de los teoremas importantes de los anillos noetherianos, haciendo uso de la descomposición primaria de un ideal y un resultado fundamental: el teorema de la base de Hilbert. Además se desarrollan las definiciones, proposiciones, teoremas de una variedad algebraica afín y el ideal asociado a una variedad, así como también el ideal de una variedad y lo más interesante es la descomposición de ideales en variedades algebraicas afines, como la condición de cadena descendente de variedades. También se hace la aplicación de los resultados obtenidos en los capítulos anteriores, para demostrar el teorema de los ceros de Hilbert en su forma dedil así como en la forma fuerte. Finalmente adoptamos una Topología que es muy débil pero sorprendentemente útil ocupando los resultados anteriores, probando propiedades que cumple esta topología como la cerradura topológica y compacidad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La matemática actual se caracteriza por el predominio del álgebra, y se habla a menudo de la algebrización de todas las ramas de la tradicional matemática. Esta tendencia se origina en los trabajos geniales de Galois para dar solución definitiva al problema de hallar las raíces de las ecuaciones algebraicas, de donde surgió la noción de grupo. Más tarde apareció la teoría abstracta de grupos y otras teorías, como las de cuaternios y de matrices. Además tanto los cuaternios como las matrices contradicen la ley conmutativa de la multiplicación de números, según la cual el orden de los factores no altera el producto, como en el caso de las geometrías no euclidianas, se llegó por esta vía a un grado de abstracción mayor de las operaciones aritméticas y algebraicas, que se definen hoy únicamente por los axiomas que se desee que cumplan. En la actualidad el Álgebra Abstracta juega un papel muy importante en el estudio de la Matemática ya que en ella se involucran diversidad de contenidos lo que se centra en el estudio de conjuntos, estructura de grupo, categorías, anillos, módulos en donde estos se dividen en las importantes ramas de Campos y Teoría de Galois, Álgebra lineal, Anillos conmutativos y módulos y estructura de anillos entre otros. Toda esta teoría contribuye al estudio del álgebra homológica dentro de la cual se prende desarrollar la Teoría de multiplicidad y en base a esta poder demostrar la fórmula límite de Samuel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente trabajo se realizó con el fin de buscar enemigos naturales de Diaphorina citri en finca El Trapiche (1) y Finca Los Planes (2), ambas ubicadas en la Subregión Metropolitana de San Salvador, entre las coordenadas geográficas 15º 08'639" N y 27º 20'11" 0. Y 15°09'771" N y 26º20'27"0. Para la captura de enemigos naturales se realizó una fase de campo en los dos sitios de estudio, mediante la colecta de brotes tiernos, así como censos visuales, desde las 7:00 am hasta las 10:00 am (se realizaron ocho muestreos, dos muestreos mensuales durante cuatro meses), además se colocaron trampas amarillas, las cuales fueron consideradas para la selección de árboles a muestrear en cada finca. La identificación de especies se realizó mediante comparación morfológica utilizando claves pictóricas y la verificación de especies mediante soporte técnico en la colección entomológica del Ministerio de Agricultura y Ganadería (MAG) y la ratificación de especies se realizó por consulta virtual con expertos en el área de entomología de Colombia y México. Para el análisis de datos se utilizaron los índices de diversidad alfa: Shannon-Wiener y Simpson. En las dos fincas muestreadas se encontraron 10 especies de enemigos naturales, los mismos para cada finca: Tamarixia radiata, Chrysoperla sp, Ceraeochrysa sp, Hyperaspis sp, Chilocorus cacti, Scymnus sp, Cycloneda sanguínea, Olla v-nigrum, Azya sp y una especie del Orden Coleoptera. Pertenecientes a 3 familias (Eulophidae, Chrysopidae, Coccinellidae). Los datos obtenidos presentan que Tamarixia radiata, Chrysoperla sp y Ceraeochrysa sp son las especies más importantes en los dos sitios ya que presentaron mayor abundancia en las dos fincas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los Grupos Libres son una área de la Teoría de Grupos, que no es profundizada en la Licenciatura en Matemática, esto, debido al bajo contenido en algebra que posee el pensum, razón por la cual, el propósito del trabajo es mostrarse como una opción para una materia electiva. Con toda la investigación y desarrollo realizado, se ha creado un trabajo apto para que un estudiante pueda leerlo y comprenderlo por sí solo, ya que posee todas las herramientas básicas para su completo entendimiento. Se ha descrito paso a paso, el proceso realizado para la demostración de los teoremas, lemas, proposiciones y corolarios, al igual que los ejercicios, que ayudan a la comprensión de los capítulos. Algunos de los ejemplos presentados son de utilidad para la demostración de los teoremas más importantes. Estos resultados relevantes fueron los objetivos trazados al inicio de la investigación. Dentro del proceso realizado durante el desarrollo del tema está, la intensa búsqueda bibliográfica en libros, revistas y artículos en internet, del cual se escogió lo más importante que permitió obtener como resultado los capítulos con la información principal, en la que se fueron desarrollando los teoremas, corolarios, lemas y proposiciones, a esto se le agregaron los diferentes tipos de ejercicios resueltos. Finalizando con la presentación de los resultados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El estudio de la teoría sobre de las cuádricas con Geometría Proyectiva, aplicando conceptos, definiciones, y teoremas fundamentales, los cuales nos llevan a comprender la importancia de su aplicación en las diferentes ramas de la matemática y sus representaciones gráficas. Es por ello que en este trabajo se trata de desarrollar temas que están enfocados a comprender las cuádricas con geometría proyectiva y su importancia. Se desarrollará la noción de proyección, donde se dan definiciones importantes sobre la proyección, así como una descripción de que sucede si se agregan los puntos ideales o puntos al infinito, y que estos sean los centros de proyección, además el enriquecimiento que aportan estos nuevos conceptos. Se desarrollarán los conceptos de coordenadas homogéneas, que es fundamental para la comprensión de los puntos ideales o puntos al infinito, que facilitarán el manejo algebraico en el estudio del espacio proyectivo, el cual también incluye puntos complejos, así como la representación del espacio en diferentes dimensiones, y cambio de estructura de coordenadas, subespacios, hiperplanos y dualidad. Los más importantes teoremas de la Geometría Euclidiana, desarrollado con la Geometría Proyectiva, que es el Teorema de Desargues, y algunos resultados importantes adicionales. También se hará una introducción a proyectividades, razón cruzada, y transformaciones lineales. Se refleja la riqueza que tienen las cuádricas aplicando los conceptos de la geometría proyectiva, así como sus diferentes representaciones. Es importante mencionar que en el pasado el ser humano se ha visto favorecido por tales representaciones, facilitando la comprensión de su entorno, aunque muchas veces no esté consciente de los aspectos matemáticos que están involucrados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se investiga las metodologías que se emplean para la enseñanza de la ortografía en los estudiantes de Tercer Ciclo del Sector Público de las cabeceras departamentales de la Zona Oriental. Se empleó el método analítico para profundizar en la interpretación sobre la importancia que se le da a la ortografía, aplicando un cuestionario de preguntas abiertas y cerradas a los docentes de los distintos centros escolares de las Cabeceras Departamentales para, obtener de ese modo, la representación cualitativa del problema. Se observó que el 100% de los profesores encuestados utilizan una metodología para la enseñanza ortográfica de variada índole, no habiendo una regulación en las metodologías y estrategias utilizadas para la enseñanza ortográfica. Se concluye que la mayoría de métodos utilizados son los tradicionales, los cuales aportan muy poco al aprendizaje de la ortografía, asimismo, que los profesores se actualizan muy poco con las nuevas metodologías de enseñanza. Es por ello que se proponen diversas metodologías para leer y escribir en un contexto social cambiando la manera tradicional de la enseñanza ortográfica.