931 resultados para BRAF mutation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that many organisms possess the ability to regulate their mutation rate in response to environmental conditions. So the question of finding an optimal mutation rate must be replaced by that of finding an optimal mutation schedule. We show that this task cannot be accomplished with standard population-dynamic models. We then develop a "hybrid" model for populations experiencing time-dependent mutation that treats population growth as deterministic but the time of first appearance of new variants as stochastic. We show that the hybrid model agrees well with a Monte Carlo simulation. From this model, we derive a deterministic approximation, a "threshold" model, that is similar to standard population dynamic models but differs in the initial rate of generation of new mutants. We use these techniques to model antibody affinity maturation by somatic hypermutation. We had previously shown that the optimal mutation schedule for the deterministic threshold model is phasic, with periods of mutation between intervals of mutation-free growth. To establish the validity of this schedule, we now show that the phasic schedule that optimizes the deterministic threshold model significantly improves upon the best constant-rate schedule for the hybrid and Monte Carlo models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional myosin II is an essential protein for cytokinesis, capping of cell surface receptors, and development of Dictyostelium cells. Myosin II also plays an important role in the polarization and movement of cells. All conventional myosins are double-headed molecules but the significance of this structure is not understood since single-headed myosin II can produce movement and force in vitro. We found that expression of the tail portion of myosin II in Dictyostelium led to the formation of single-headed myosin II in vivo. The resultant cells contain an approximately equal ratio of double- and single-headed myosin II molecules. Surprisingly, these cells were completely blocked in cytokinesis and capping of concanavalin A receptors although development into fruiting bodies was not impaired. We found that this phenotype is not due to defects in myosin light chain phosphorylation. These results show that single-headed myosin II cannot function properly in vivo and that it acts as a dominant negative mutation for myosin II function. These results suggest the possibility that cooperativity of myosin II heads is critical for force production in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV) encodes the enzyme deoxyuridine-triphosphatase (DU; EC 3.6.1.23) between the coding regions for reverse transcriptase and integrase in the pol gene. Here, we report the in vivo infection of cats with a DU- variant of the PPR strain of FIV and compare its growth properties and tissue distribution with those of wild-type FIV-PPR. The results reveal several important points: (i) DU- FIV is able to infect the cat, with kinetics similar to that observed with wild-type FIV; (ii) both wild-type and DU- FIV-infected specific-pathogen free cats mount a strong humoral antibody response which is able to limit the virus burden in both groups of animals; (iii) the virus burden is reduced in the DU- FIV-infected cats, particularly in tissues such as spleen and salivary gland; and (iv) the mutation frequency in DU- FIVs integrated in the DNA of primary macrophages after 9 months of infection is approximately 5-fold greater than the frequency observed in DU- FIV DNA integrated in T lymphocytes. Mutation rate with wild-type FIV remains the same in both cell types in vivo. The dominant mutations seen in macrophages with DU- FIV are G-->A base changes, consistent with an increased misincorporation of deoxyuridine into viral DNA of DU- FIVs during reverse transcription. Because this enzyme is absent from human immunodeficiency virus type 1 and other primate lentiviruses, virus replication in cell environments with low DU activity may lead to increased mutation and contribute to the rapid expansion of the viral repertoire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMK) phosphorylates proteins pivotally involved in diverse neuronal processes and thereby coordinates cellular responses to external stimuli that regulate intracellular Ca2+ [Hanson, P. I. & Schulman, H. (1992) Annu. Rev. Biochem. 61, 559-664]. Despite extensive study, the impact of this enzyme on control of the excitability of neuron populations in the mammalian nervous system in situ is unknown. To address this question, we studied transgenic mice carrying a null mutation (-/-) for the alpha subunit of CaMK. In contrast to wild-type littermates, null mutants exhibit profound hyperexcitability, evident in epileptic seizures involving limbic structures including the hippocampus. No evidence of increased excitability was detected in mice carrying null mutations of the gamma isoform of protein kinase C, underscoring the specificity of the effect of CaMK. CaMK plays a powerful and previously underappreciated role in control of neuronal excitability in the mammalian nervous system. These insights have important implications for analyses of mechanisms of epilepsy and, perhaps, learning and memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive reversion of a lac- frameshift mutation in Escherichia coli appears to be due to DNA polymerase errors, implying that DNA is being synthesized although the cells are not dividing. Here we report that the production of adaptive lac+ revertants (i) is much higher when the mutational target is on the F' episome than when it is on the bacterial chromosome; (ii) is enhanced by functions required for conjugation; but (iii) does not require conjugation per se. These results suggest that, in static cells, DNA synthesis is initiated from the conjugal origin of transfer. Mutations may arise as polymerase errors during this synthesis or during synthesis stimulated by recombination among the multiple gene copies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the functional consequences of a mutation in the epithelial Na+ channel that causes a heritable form of salt-sensitive hypertension, Liddle disease. This mutation, identified in the original kindred described by Liddle, introduces a premature stop codon in the channel beta subunit, resulting in a deletion of almost all of the C terminus of the encoded protein. Coexpression of the mutant beta subunit with wild-type alpha and gamma subunits in Xenopus laevis oocytes resulted in an approximately 3-fold increase in the macroscopic amiloride-sensitive Na+ current (INa) compared with the wild-type channel. This change in INa reflected an increase in the overall channel activity characterized by a higher number of active channels in membrane patches. The truncation mutation in the beta subunit of epithelial Na+ channel did not alter the biophysical and pharmacological properties of the channel--including unitary conductance, ion selectivity, or sensitivity to amiloride block. These results provide direct physiological evidence that Liddle disease is related to constitutive channel hyperactivity in the cell membrane. Deletions of the C-terminal end of the beta and gamma subunits of rat epithelial Na+ channel were functionally equivalent in increasing INa, suggesting that the cytoplasmic domain of the gamma subunit might be another molecular target for mutations responsible for salt-sensitive forms of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in genes encoding membrane proteins have been associated with cell death of unknown cause from invertebrate development to human degenerative diseases. A point mutation in the gene for myelin proteolipid protein (PLP) underlies oligodendrocyte death and dysmyelination in jimpy mice, an accurate model for Pelizaeus-Merzbacher disease. To distinguish the loss of PLP function from other effects of the misfolded protein, we took advantage of the X chromosomal linkage of the gene and have complemented jimpy with a wild-type PLP transgene. In this artificial heterozygous situation, the jimpy mutation emerged as genetically dominant. At the cellular level oligodendrocytes showed little increase in survival although endogenous PLP gene and autosomal transgene were truly coexpressed. In surviving oligodendrocytes, wild-type PLP was functional and immunodetectable in myelin. Moreover, compacted myelin sheaths regained their normal periodicity. This strongly suggests that, despite the presence of functional wild-type PLP, misfolded jimpy PLP is by itself the primary cause of abnormal oligodendrocyte death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified a naturally occurring mutation in the promoter of the lipoprotein lipase (LPL) gene. One of 20 patients with familial combined hyperlipidemia (FCHL) and reduced levels of postheparin plasma LPL activity was found to be a heterozygote carrier of this mutation. The mutation, a T-->C substitution at nt -39, occurred in the binding site of the transcription factor Oct-1. As a result, the transcriptional activity of the mutant promoter was < 15% of wild type, as determined by transfection studies in the human macrophage-like cell line THP-1. This decrease in promoter activity was observed in undifferentiated as well as in phorbol ester-differentiated THP-1 cells. Furthermore, the inductive effect of elevating the levels of intracellular cAMP was equally reduced. This mutation was not present among 20 FCHL patients with normal plasma LPL levels nor has it been reported among individuals with familial LPL deficiency. Thus, heterozygosity for LPL promoter mutations may be one of several factors that contribute to the etiology of FCHL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine Pax-3 protein contains two DNA-binding domains, a paired domain and a homeodomain, and alterations in the Pax-3 gene are responsible for the neural tube defects observed in the Splotch (Sp) mouse mutant. Of five Sp alleles, Splotch-delayed (Spd) is the only one that encodes a full-length Pax-3 protein, containing a single glycine-to-arginine substitution within the paired domain. To better understand the consequence of this mutation on Pax-3 function, we have analyzed the DNA-binding properties of wild-type and Spd Pax-3, using oligonucleotides that bind primarily to the paired domain (e5) or exclusively to the homeodomain (P2). Wild-type Pax-3 was found to bind e5 in a specific manner. In contrast, the Spd mutation reduced binding of Pax-3 to e5 17-fold, revealing a defect in DNA binding by the paired domain. Surprisingly, the Spd mutation also drastically reduced the homeodomain-specific binding to P2 by 21-fold when compared with the wild-type protein. Interestingly, a deletion which removes the Spd mutation was found to restore P2-binding activity, suggesting that within the full-length Pax-3 protein, the paired domain and homeodomain may interact. We conclude, therefore, that the Spd mutation is phenotyically expressed in vitro by a defect in the DNA-binding properties of Pax-3. Furthermore, it is apparent that the paired domain and homeodomain of Pax-3 do not function as independent domains, since a mutation in the former impairs the DNA-binding activity of the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the Saccharomyces cerevisiae SSU71 gene were isolated as suppressors of a transcription factor TFIIB defect that confers both a cold-sensitive growth defect and a downstream shift in transcription start-site selection at the cyc1 locus. The ssu71-1 suppressor not only suppresses the conditional phenotype but also restores the normal pattern of transcription initiation at cyc1. In addition, the ssu71-1 suppressor confers a heat-sensitive phenotype that is dependent upon the presence of the defective form of TFIIB. Molecular and genetic analysis of the cloned SSU71 gene demonstrated that SSU71 is a single-copy essential gene encoding a highly charged protein with a molecular mass of 82,194 daltons. Comparison of the deduced Ssu71 amino acid sequence with the protein data banks revealed significant similarity to RAP74, the larger subunit of the human general transcription factor TFIIF. Moreover, Ssu71 is identical to p105, a component of yeast TFIIF. Taken together, these data demonstrate a functional interaction between TFIIB and the large subunit of TFIIF and that this interaction can affect start-site selection in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the gene encoding the beta subunit of rod cGMP phosphodiesterase are known causes of photoreceptor degeneration in two animal models of retinitis pigmentosa, the rd (retinal degeneration) mouse and the Irish setter dog with rod/cone dysplasia. Here we report a screen of 92 unrelated patients with autosomal recessive retinitis pigmentosa for defects in the human homologue of this gene. We identified seven different mutations that cosegregate with the disease. They were found among four patients with each patient heterozygously carrying two mutations. All of these mutations are predicted to affect the putative catalytic domain, probably leading to a decrease in phosphodiesterase activity and an increase in cGMP levels within rod photoreceptors. Mutations in the gene encoding the beta subunit of rod phosphodiesterase are the most common identified cause of autosomal recessive retinitis pigmentosa, accounting for approximately 4% of cases in North America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attachment of Ras protein to the membrane, which requires farnesylation at its C terminus, is essential for its biological activity. A promising pharmacological approach of antagonizing oncogenic Ras activity is to develop inhibitors of farnesyltransferase. We use Caenorhabditis elegans vulval differentiation, which is controlled by a Ras-mediated signal transduction pathway, as a model system to test previously identified farnesyltransferase inhibitors. We show here that two farnesyltransferase inhibitors, manumycin and gliotoxin, suppress the Multivulva phenotype resulting from an activated let-60 ras mutation, but not the Multivulva phenotype resulting from mutations in the lin-1 gene or the lin-15 gene, which act downstream and upstream of let-60 ras, respectively, in the signaling pathway. These results are consistent with the idea that the suppression of the Multivulva phenotype of let-60 ras by the two inhibitors is specific for Ras protein and that the mutant Ras protein might be more sensitive than wild-type Ras to the farnesyltransferase inhibitors. This work suggests that C. elegans vulval development could be a simple and effective in vivo system for evaluation of farnesyltransferase inhibitors against Ras-activated tumors.