897 resultados para BORON HYDRIDES
Resumo:
Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.
Resumo:
This study presents osmium (Os) isotope and elemental data for cleaned planktic foraminifera, authigenic Fe-Mn oxyhydroxides and pelagic carbonate host sediments from ODP site 758 in the southernmost reaches of the Bay of Bengal. The Os in the bulk sediments appears to be dominantly hydrogeneous (sourced by carbonate and Fe-Mn oxyhydroxide), but variations in this particular core are controlled by the presence of volcanic ash. Fe-Mn oxyhydroxide leachates (of the bulk sediments) from Holocene samples also yield an Os isotope composition close to that of seawater, but the record diverges from that of foraminifera at a depth corresponding to the oxic/post-oxic boundary, suggesting diagenetic mobilization of Os at depths below this. Holocene planktic foraminifera, cleaned using oxidative-reductive techniques, also give Os isotope compositions indistinguishable from modern seawater, but the record obtained for the past 150 kyr shows strong covaraitions of 187Os/188Os with both the local and global oxygen isotope record, with less radiogenic Os isotope compositions during glacial intervals. These results indicate that foraminifera provide a robust record of seawater Os isotope compositions, and comparison of the data obtained here with records from the other major oceans demonstrate global changes in 187Os/188Os over this time interval, while the covariation with oxygen isotopes suggest a process controlling the Os isotope composition that is in phase with global climate cycles. Global excursions to relatively unradiogenic 187Os/188Os during glacial intervals are consistent with decreased input of radiogenic continental material, reflecting cooler temperatures and reduced continental runoff. Modelling indicates that the shift to unradiogenic values during glacial intervals could be caused by an ~30% decrease in the global river flux, with an ~5% change in river composition. If the residence time of Os in the oceans is ~5 ka then the post-glacial recovery to present-day seawater values is consistent with a corresponding increase in the river flux of around 30%. However, if the residence time of Os is closer to 40 ka, as is suggested by the global river flux, then this demands either significant changes in both the riverine Os flux and composition of around 40% and 30%, respectively, that closely follow the oxygen isotope record, or else a short-lived post-glacial pulse of weathering some 75% greater than the steady-state flux. In either case, these results clearly indicate that climatic changes affect both the flux and composition of weathered material delivered to the oceans on glacial-interglacial timescales.
Resumo:
During Leg 65, 15 holes were drilled at four sites located on young crust in the mouth of the Gulf of California. Quaternary to upper Pliocene hemipelagic sediments above and interlayered within the young basaltic basement were cored. The influence of hot lava, high temperature gradients, and hydrothermal activity on the mineralogy and geochemistry of the terrigenous sediments near contacts with basalts might therefore be expected. The purpose of the present study was to determine the mineralogy and inorganic geochemistry of these sediments and to analyze the nature and extent of low temperature alteration. To this end we studied the mineralogy and inorganic geochemistry of 75 sediment samples, including those immediately overlying uppermost basalts and those from layers alternating with basalts within the basement. We separated three size fractions - <2 µm (clay), 2-20 µm (intermediate), and >20 µm (coarse) - and applied the following mineralogical determinations: x-ray diffraction (XRD), infrared spectroscopy, transmission and scanning electron microscopy, and optical microscopy (for coarse fractions, using thin sections and smear slides). We calculated the percentages of clay minerals using Biscaye's (1964) method, and used routine wet chemical analyses to determine bulk composition and quantitative spectral analyses for trace elements.
Resumo:
Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studied by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45-74 wt%, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45-53 wt% SiO2) comprise the following varieties: potassic (on average 4.2 wt% K2O, 1.7 wt% Na2O, 1.0 wt% TiO2, and 0.20 wt% P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53-64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64-74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt%, 1.19 wt% on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt% (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol'shoi Semyachek, Dikii Greben', Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.
Resumo:
The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
Two samples of pumice, obtained by trawling from depths of 3100 and 4300 m on the eastern slope of the Great Meteor Seamount in the Atlantic Ocean, have been examined. Their petrochemical composition has been studied. The pumice is probably a product of youthful explosive volcanism on the Azores, displaced southward by surface currents.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.