991 resultados para BIOCHEMISTRY
Resumo:
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Resumo:
An Acinetobacter baumannii global clone 1 (GC1) isolate was found to carry a novel capsule biosynthesis gene cluster, designated KL12. KL12 contains genes predicted to be involved in the synthesis of simple sugars, as well as ones for N-acetyl-l-fucosamine (l-FucpNAc) and N-acetyl-d-fucosamine (d-FucpNAc). It also contains a module of 10 genes, 6 of which are required for 5,7-di-N-acetyl-legionaminic acid synthesis. Analysis of the composition of the capsule revealed the presence of N-acetyl-d-galactosamine, l-FucpNAc and d-FucpNAc, confirming the role of fnlABC and fnr/gdr genes in the synthesis of l-FucpNAc and d-FucpNAc, respectively. A non-2-ulosonic acid, shown to be 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro-non-2-ulosonic acid, was also detected. This sugar has not previously been recovered from biological source, and was designated 5,7-di-N-acetyl-acinetaminic acid (Aci5Ac7Ac). Proteins encoded by novel genes, named aciABCD, were predicted to be involved in the conversion of 5,7-di-N-acetyl-legionaminic acid to Aci5Ac7Ac. A pathway for 5,7-di-N-acetyl-8-epilegionaminic acid biosynthesis was also proposed. In available A. baumannii genomes, genes for the synthesis of 5,7-di-N-acetyl-acinetaminic acid were only detected in two closely related capsule gene clusters, KL12 and KL13, which differ only in the wzy gene. KL12 and KL13 are carried by isolates belonging to clinically important clonal groups, GC1, GC2 and ST25. Genes for the synthesis of N-acyl derivatives of legionaminic acid were also found in 10 further A. baumannii capsule gene clusters, and three carried additional genes for production of 5,7-di-N-acetyl-8-epilegionaminic acid.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
Inflammation is a fundamental component of the normal adult wound healing response occurring even in the absence of infection. It performs many beneficial roles such as the clearing of damaged cells and extracellular matrix (ECM), the removal of pathogens that might other wise multiply and spread, and the secretion of mediators that regulate other aspects of wound healing such as proliferation, re-epithelialisation and wound remodelling. Yet, excess and/or prolonged inflammation is detrimental to wound healing and leads to increased fibrosis and scarring, which can be disfiguring and, in cases such as contractures, can lead to disability. Furthermore, excessive inflammation is a major contributing factor to the persistence of chronic non-healing wounds, which are “stuck” in the inflammatory phase of healing and fail to reepithelialise. Current research suggest that the type of immune cells, their timing and the level of inflammation in a wound could have dramatic effect on whether a wound heals in a timely fashion and the final quality of the repaired tissue. Studies suggest that altering the level of inflammation might be beneficial in terms of reducing scarring and improving the rate of healing in chronic wounds. This review looks at the role of the major immune cells in normal and impaired wound healing and strategies that might be used to reduce inflammation in wounds.
Resumo:
Scope: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. Methods and results: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. Conclusion: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.
Resumo:
Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.
Resumo:
It is commonly accepted that regular moderate intensity physical activity reduces the risk of developing many diseases. Counter intuitively, however, evidence also exists for oxidative stress resulting from acute and strenuous exercise. Enhanced formation of reactive oxygen and nitrogen species may lead to oxidatively modified lipids, proteins and nucleic acids and possibly disease. Currently, only a few studies have investigated the influence of exercise on DNA stability and damage with conflicting results, small study groups and the use of different sample matrices or methods and result units. This is the first review to address the effect of exercise of various intensities and durations on DNA stability, focusing on human population studies. Furthermore, this article describes the principles and limitations of commonly used methods for the assessment of oxidatively modified DNA and DNA stability. This review is structured according to the type of exercise conducted (field or laboratory based) and the intensity performed (i.e. competitive ultra/endurance exercise or maximal tests until exhaustion). The findings presented here suggest that competitive ultra-endurance exercise (>4h) does not induce persistent DNA damage. However, when considering the effects of endurance exercise (<4h), no clear conclusions could be drawn. Laboratory studies have shown equivocal results (increased or no oxidative stress) after endurance or exhaustive exercise. To clarify which components of exercise participation (i.e. duration, intensity and training status of subjects) have an impact on DNA stability and damage, additional carefully designed studies combining the measurement of DNA damage, gene expression and DNA repair mechanisms before, during and after exercise of differing intensities and durations are required.
Resumo:
During acute and strenuous exercise, the enhanced formation of reactive oxygen species can induce damage to lipids, proteins, and nucleic acids. The aim of this study was to investigate the effect of an Ironman triathlon (3.8 km swim, 180 km cycle, 42 km run), as a prototype of ultra-endurance exercise, on DNA stability. As biomarkers of genomic instability, the number of micronuclei, nucleoplasmic bridges, and nuclear buds were measured within the cytokinesis-block micronucleus cytome assay in once-divided peripheral lymphocytes of 20 male triathletes. Blood samples were taken 2 days before, within 20 min after the race, and 5 and 19 days post-race. Overall, the number of micronuclei decreased (P < 0.05) after the race, remained at a low level until 5 days post-race, and declined further to 19 days post-race (P < 0.01). The frequency of nucleoplasmic bridges and nuclear buds did not change immediately after the triathlon. The number of nucleoplasmic bridge declined from 2 days pre-race to 19 days post-exercise (P < 0.05). The frequency of nuclear buds increased after the triathlon, peaking 5 days post-race (P < 0.01) and decreased to basic levels 19 days after the race (P < 0.01). The results suggest that an Ironman triathlon does not cause long-lasting DNA damage in well-trained athletes.
Resumo:
The major aims of this study were to investigate the effect of an Ironman triathlon on DNA migration in the single cell gel electrophoresis assay, apoptosis and necrosis in the cytokinesis-block micronucleus cytome assay with lymphocytes and on changes of total antioxidant capacity in plasma. Blood samples were taken 2 days (d) before, within 20 min, 1 d, 5 d and 19 d post-race. The level of strand breaks decreased (p<0.05) immediately after the race, then increased (p<0.01) 1 d post-race and declined (p<0.01) until 19 d post-race. Apoptotic and necrotic cells decreased (p<0.01) and the total antioxidant status increased (p<0.01) immediately after the race. The results indicate that ultra-endurance exercise does not cause prolonged DNA damage in well-trained male athletes.
Resumo:
Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.
Resumo:
Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.
Resumo:
Objetivo Comparar los cambios antropométricos y bioquímicos en personas inactivas, que realizan un programa de actividad física frente a los que no lo realizan desde los Centros de Atención Primaria. Métodos Cien personas inactivas de ambos sexos, mayores de 55 años fueron aleatorizadas a un grupo experimental (n = 50) y a un grupo control (n = 50). Se realizó un programa de promoción de actividad física siguiendo los criterios del Colegio Americano de Medicina del Deporte, de 60 min cada sesión, 2 sesiones por semana, durante 3 meses. Las medidas antropométricas incluyeron el índice de masa corporal y el porcentaje graso, y como variables bioquímicas el perfil lipídico, hematíes y la creatina kinasa. Resultados Completaron el estudio 75 personas. Esta investigación no presentó cambios significativos a nivel antropométrico, ni en las variables bioquímicas del perfil lipídico. Sí se observaron efectos clínicamente relevantes en la concentración de los hematíes de las mujeres que realizaron dicho programa. Conclusiones El efecto clínico global fue pequeño en las personas que realizaron el programa, pero relevante para la salud de la población. Esta intervención produce efectos a corto plazo en la bioquímica de las personas inactivas. Abstract in English Objective Compare anthropometry and biochemical changes in inactive people who participate in a physical activity program versus those who do not from the Primary Health Care Centers. Methods One hundred inactive subjects of both genders, 55 years and older, from Torremolinos, Spain were randomized into an experimental group (n = 50) and a control group (n = 50). A program promoting physical activity was carried out following the American Medical Society for Sport's Medicine criteria. The program included sessions a week for 3 months. Antropometric measurements included body mass index and fat percentage, and such as biochemical measures: the lipid profile, erythrocytes, and creatine kinase. Results Seventy-five persons completed the study. This research did not show significant changes to anthropometric or biochemical outcomes of the lipid profile. However, there were clinically relevant effects regarding red blood cells concentration in the women who participated in this program. Conclusions Overall clinical effect was small in those participating in the program, but relevant for the health of the population. This program has short-term effects on biochemistry results of inactive subjects.
Resumo:
The Older Australian Twins Study (OATS) was recently initiated to investigate genetic and environmental factors and their associations and interactions in healthy brain ageing and ageing-related neurocognitive disorders. The study extends the classic MZ-DZ design to include one or two equivalently aged siblings for each twin pair and utilizes the rich resources of the Australian Twin Registry. The study has a number of distinguishing features including comprehensive psychiatric, neuropsychological, cardiovascular, metabolic, and neuroimaging assessments, a longitudinal design and links with a brain donor program. The study measures many behavioral and environmental factors, but in particular lifetime physical and mental activity, physical and psychological trauma, loss of parent early in life, later losses and life events, early-life socioeconomic environment, alcohol and drug use, occupational exposure, and nutrition. It also includes comprehensive cardiovascular assessment, blood biochemistry, genetics and proteomics. The socio-demographic and health data on the first 172 pairs of twins participating in this study are presented. Prevalence of mild cognitive impairment is 12.8% and of dementia 1.5% in the sample. The target sample size is 1000, with at least 400 pairs of twins aged 65-90 years. The cohort will be assessed every two years, with in-depth assessments being repeated. OATS offers an excellent opportunity for collaboration with other similar studies as well as researchers who share the same interests.
Resumo:
Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to “averagely” aged humans. These inverse observations in nonagenarians (90–99 years), centenarians (100–109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in “super old” humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in “successful agers”. There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching “super old” age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere shortening.
Resumo:
It is becoming increasing clear that microRNAs contribute to the regulation of many biological processes, including wound healing. After injury, keratinocytes need to undergo what is known as an epithelial-to-mesenchymal transition (EMT) to initiate re-epithelialisation. During this process, keratinocytes reduce their attachment to the underlying matrix, extend membrane protrusions, become motile and migrate over the wound bed, affecting wound closure. MicroRNAs that regulate EMT are aberrantly upregulated in keratinocytes at the edge of non-healing wounds and potentially play a role in the chronicity of these wounds. In vitro and in vivo, downregulation of these microRNAs promotes EMT and migration, facilitating re-epithelialisation in wound models. This review will focus on the role of microRNAs that regulate or have potential to regulate EMT and re-epithelialisation during wound healing