962 resultados para B16F10-Nex2 tumor cells
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.
Resumo:
To improve the yield of the cytogenetic analysis in patients with acute nonlymphocytic leukemia (ANLL), six culture conditions for bone marrow or peripheral blood cells were tested in parallel. Two conditioned media (CM), phytohemagglutinin leukocyte PHA-LCM and 5637 CM, nutritive elements (NE), and methotrexate (MTX) cell synchronization were investigated in 14 patients presenting with either inv(16)/ t(16;16) (group 1, n = 9 patients) or t(15;17) (group 2, n = 5). The criteria used to identify the most favorable culture conditions were the mitotic index (MI), the morphological index (MorI), and the percentage of abnormal metaphases. In the presence of PHA-LCM and 5637 CM, the MI were significantly increased in group 2, whereas in the MTX conditions, MI remained very low in both groups. The values of the MorI did not reveal any significant changes in chromosome resolution between the conditions in either group. The addition of NE did not have a positive effect in quantity or quality of metaphases. Because of the variability of the response of leukemic cells to different stimulations in vitro, several culture conditions in parallel are required to ensure a satisfactory yield of the chromosome analysis in ANLL.
Resumo:
Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.
Resumo:
Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.
Resumo:
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
Resumo:
Objective: Lymphomas with signet ring cell features are rare, as is uterine dissemination of lymphomas. We report an exceptional case of a uterine tumor combining these two characteristics. Method: A 61-year-old female was diagnosed in 2004 with localized nodal grade 2 follicular lymphoma (stage IA). She received local radiation therapy, experienced total remission, and did well until 2009 when a systematic CT scan evidenced a pelvic anterior-lateral mass. Total enlarged hysterectomy was performed. Results: The anterior uterine wall contained a 4.8-cm fish flesh well-delineated mass corresponding to a mostly diffuse and focally nodular proliferation of medium to large cells with extensive signet ring cell changes. Tumor cells were CD20-, CD10-, Bcl2-, and Bcl6-positive with a low proliferation rate (<10-15%); CD21 underlined a focal follicular architecture. The vacuoles were PAS-negative and did not stain for immunoglobulin; ultrastructural analysis revealed nonspecific degenerative vacuoles. No lymph nodes were identified isolated from the surgical specimen. The tumor was considered as a secondary localization of the systemic follicular lymphoma, though no signet ring cells were evidenced in the cervical lymph node biopsy (reviewed). Follow-up showed retroperitoneal tissue infiltration (PET-CT) and normal medullar biopsy. She recently started R-CHOP chemotherapy. Conclusion: This case illustrates both an unusual site of dissemination and challenging cytological characteristics in a follicular lymphoma. The signet ring cell changes challenged the adequate classification of this lymphoma as either a large B cell or a follicular B cell lymphoma.
Resumo:
The transcriptional transactivational activities of the phosphoprotein cAMP-response element-binding protein (CREB) are activated by the cAMP-dependent protein kinase A signaling pathway. Dimers of CREB bind to the palindromic DNA element 5'-TGACGTCA-3' (or similar motifs) called cAMP-responsive enhancers (CREs) found in the control regions of many genes, and activate transcription in response to phosphorylation of CREB by protein kinase A. Earlier we reported on the cyclical expression of the CREB gene in the Sertoli cells of the rat testis that occurred concomitant with the FSH-induced rise in cellular cAMP levels and suggested that transcription of the CREB gene may be autoregulated by cAMP-dependent transcriptional proteins. We now report the structure of the 5'-flanking sequence of the human CREB gene containing promoter activity. The promoter has a high content of guanosines and cytosines and lacks canonical TATA and CCAAT boxes typically found in the promoters of genes in eukaryotes. Notably, the promoter contains three CREs and transcriptional activities of a promoter-luciferase reporter plasmid transfected to placental JEG-3 cells are increased 3- to 5-fold over basal activities in response to either cAMP or 12-O-tetradecanoyl phorbol-14-acetate, and give 6- to 7-fold responses when both agents are added. The CREs bind recombinant CREB and endogenous CREB or CREB-like proteins contained in placental JEG-3 cells and also confer cAMP-inducible transcriptional activation to a heterologous minimal promoter. Our studies suggest that the expression of the CREB gene is positively autoregulated in trans.
Resumo:
The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.
Resumo:
Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.
Resumo:
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Resumo:
Peripheral T-cell lymphoma (PTCL) encompasses a heterogeneous group of neoplasms with generally poor clinical outcome. Currently 50% of PTCL cases are not classifiable: PTCL-not otherwise specified (NOS). Gene-expression profiles on 372 PTCL cases were analyzed and robust molecular classifiers and oncogenic pathways that reflect the pathobiology of tumor cells and their microenvironment were identified for major PTCL-entities, including 114 angioimmunoblastic T-cell lymphoma (AITL), 31 anaplastic lymphoma kinase (ALK)-positive and 48 ALK-negative anaplastic large cell lymphoma, 14 adult T-cell leukemia/lymphoma and 44 extranodal NK/T-cell lymphoma that were further separated into NK-cell and gdT-cell lymphomas. Thirty-seven percent of morphologically diagnosed PTCL-NOS cases were reclassified into other specific subtypes by molecular signatures. Reexamination, immunohistochemistry, and IDH2 mutation analysis in reclassified cases supported the validity of the reclassification. Two major molecular subgroups can be identified in the remaining PTCL-NOS cases characterized by high expression of either GATA3 (33%; 40/121) or TBX21 (49%; 59/121). The GATA3 subgroup was significantly associated with poor overall survival (P = .01). High expression of cytotoxic gene-signature within the TBX21 subgroup also showed poor clinical outcome (P = .05). In AITL, high expression of several signatures associated with the tumor microenvironment was significantly associated with outcome. A combined prognostic score was predictive of survival in an independent cohort (P = .004).
Resumo:
The potential role of angiotensin-II in mediating catecholamine and neuropeptide-Y release in a human pheochromocytoma has been investigated. Angiotensin-II type I receptors are transcribed and translated into functional proteins in a surgically removed pheochromocytoma. Primary cell culture of the tumor has been studied in a perfused system. Angiotensin-II increased the release of norepinephrine and neuropeptide-Y by the pheochromocytes. Activation of the angiotensin-II type I receptors by angiotensin-II was associated with a rise in cytosolic free calcium. The renin-angiotensin system may, therefore, contribute to the secretion of catecholamines and NPY occurring in patients with pheochromocytoma and when stimulated trigger hypertensive crisis.
Resumo:
Thirty monoclonal antibodies from eight laboratories exchanged after the First Workshop on Monoclonal Antibodies to Human Melanoma held in March 1981 at NIH were tested in an antibody-binding radioimmunoassay using a panel of 28 different cell lines. This panel included 12 melanomas, three neuroblastomas, four gliomas, one retinoblastoma, four colon carcinomas, one lung carcinoma, one cervical carcinoma, one endometrial carcinoma, and one breast carcinoma. The reactivity pattern of the 30 monoclonal antibodies tested showed that none of them were directed against antigens strictly restricted to melanoma, but that several of them recognize antigenic structures preferentially expressed on melanoma cells. A large number of antibodies were found to crossreact with gliomas and neuroblastomas. Thus, they seem to recognize neuroectoderm associated differentiation antigens. Four monoclonal antibodies produced in our laboratory were further studied for the immunohistological localization of melanoma associated antigens on fresh tumor material. In a three-layer biotin-avidin-peroxidase system each antibody showed a different staining pattern with the tumor cells, suggesting that they were directed against different antigens.
Resumo:
Prominin-1 (CD133) is physiologically expressed at the apical membranes of secretory (serous and mucous) and duct cells of major salivary glands. We investigated its expression in various human salivary gland lesions using two distinct anti-prominin-1 monoclonal antibodies (80B258 and AC133) applied on paraffin-embedded sections and characterized its occurrence in saliva. The 80B258 epitope was extensively expressed in adenoid cystic carcinoma, in lesser extent in acinic cell carcinoma and pleomorphic adenoma, and rarely in mucoepidermoid carcinoma. The 80B258 immunoreactivity was predominately detected at the apical membrane of tumor cells showing acinar or intercalated duct cell differentiation, which lined duct- or cyst-like structures, and in luminal secretions. It was observed on the whole cell membrane in non-luminal structures present in the vicinity of thin-walled blood vessels and hemorrhagic areas in adenoid cystic carcinoma. Of note, AC133 labeled only a subset of 80B258-positive structures. In peritumoral salivary gland tissues as well as in obstructive sialadenitis, an up-regulation of prominin-1 (both 80B258 and AC133 immunoreactivities) was observed in intercalated duct cells. In most tissues, prominin-1 was partially co-expressed with two cancer markers: carcinoembryonic antigen (CEA) and mucin-1 (MUC1). Differential centrifugation of saliva followed by immunoblotting indicated that all three markers were released in association with small membrane vesicles. Immuno-isolated prominin-1-positive vesicles contained CEA and MUC1, but also exosome-related proteins CD63, flotillin-1, flotillin-2 and the adaptor protein syntenin-1. The latter protein was shown to interact with prominin-1 as demonstrated by its co-immunoisolation. A fraction of saliva-associated prominin-1 appeared to be ubiquitinated. Collectively, our findings bring new insights into the biochemistry and trafficking of prominin-1 as well as its immunohistochemical profile in certain types of salivary gland tumors and inflammatory diseases.