869 resultados para Bäcklund–Darboux Transformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jaagsiekte sheep retrovirus (JSRV) can induce rapid, multifocal lung cancer, but JSRV is a simple retrovirus having no known oncogenes. Here we show that the envelope (env) gene of JSRV has the unusual property that it can induce transformation in rat fibroblasts, and thus is likely to be responsible for oncogenesis in animals. Retrovirus entry into cells is mediated by Env interaction with particular cell-surface receptors, and we have used phenotypic screening of radiation hybrid cell lines to identify the candidate lung cancer tumor suppressor HYAL2/LUCA2 as the receptor for JSRV. HYAL2 was previously described as a lysosomal hyaluronidase, but we show that HYAL2 is actually a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein. Furthermore, we could not detect hyaluronidase activity associated with or secreted by cells expressing HYAL2, whereas we could easily detect such activity from cells expressing the related serum hyaluronidase HYAL1. Although the function of HYAL2 is currently unknown, other GPI-anchored proteins are involved in signal transduction, and some mediate mitogenic responses, suggesting a potential role of HYAL2 in JSRV Env-mediated oncogenesis. Lung cancer induced by JSRV closely resembles human bronchiolo-alveolar carcinoma, a disease that is increasing in frequency and now accounts for ≈25% of all lung cancer. The finding that JSRV env is oncogenic and the identification of HYAL2 as the JSRV receptor provide tools for further investigation of the mechanism of JSRV oncogenesis and its relationship to human bronchiolo-alveolar carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary carcinoma, a unique animal model for human bronchioalveolar carcinoma. We previously isolated a JSRV proviral clone and showed that it was both infectious and oncogenic. Thus JSRV is necessary and sufficient for the development of ovine pulmonary carcinoma, but no data are available on the mechanisms of transformation. Inspection of the JSRV genome reveals standard retroviral genes, but no evidence for a viral oncogene. However, an alternate ORF in pol (orf-x) might be a candidate for a transforming gene. We tested whether the JSRV genome might encode a transforming gene by transfecting an expression plasmid for JSRV [pCMVJS21, driven by the cytomegalovirus (CMV) immediate early promoter] into mouse NIH 3T3 cells. Foci of transformed cells appeared in the transfected cultures 2–3 weeks posttransfection; cloned transformants showed anchorage independence for growth, and they expressed JSRV RNA. These results indicate that the JRSV genome contains information with direct transforming potential for NIH 3T3 cells. Transfection of a mutated version of pCMVJS21 in which the orf-x protein was terminated by two stop codons also gave transformed foci. Thus, orf-x was eliminated as the candidate transforming gene. In addition, another derivative of pCMVJS21 (pCMVJS21ΔGP) in which the gag, pol (and orf-x) coding sequences were deleted also gave transformed foci. These results indicate that the envelope gene carries the transforming potential. This is an unusual example of a native retroviral structural protein with transformation potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically induced skin carcinomas in mice are a paradigm for epithelial neoplasia, where oncogenic ras mutations precede p53 and INK4a/ARF mutations during the progression toward malignancy. To explore the biological basis for these genetic interactions, we studied cellular responses to oncogenic ras in primary murine keratinocytes. In wild-type keratinocytes, ras induced a cell-cycle arrest that displayed some features of terminal differentiation and was accompanied by increased expression of the p19ARF, p16INK4a, and p53 tumor suppressors. In ARF-null keratinocytes, ras was unable to promote cell-cycle arrest, induce differentiation markers, or properly activate p53. Although oncogenic ras produced a substantial increase in both nucleolar and nucleoplasmic p19ARF, Mdm2 did not relocalize to the nucleolus or to nuclear bodies but remained distributed throughout the nucleoplasm. This result suggests that p19ARF can activate p53 without overtly affecting Mdm2 subcellular localization. Nevertheless, like p53-null keratinocytes, ARF-null keratinocytes were transformed by oncogenic ras and rapidly formed carcinomas in vivo. Thus, oncogenic ras can activate the ARF-p53 program to suppress epithelial cell transformation. Disruption of this program may be important during skin carcinogenesis and the development of other carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nox1, a homologue of gp91phox, the catalytic moiety of the superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document})-generating NADPH oxidase of phagocytes, causes increased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} generation, increased mitotic rate, cell transformation, and tumorigenicity when expressed in NIH 3T3 fibroblasts. This study explores the role of reactive oxygen species (ROS) in regulating cell growth and transformation by Nox1. H2O2 concentration increased ≈10-fold in Nox1-expressing cells, compared with <2-fold increase in O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. When human catalase was expressed in Nox1-expressing cells, H2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most productive (“star”) bioscientists had intellectual human capital of extraordinary scientific and pecuniary value for some 10–15 years after Cohen and Boyer’s 1973 founding discovery for biotechnology [Cohen, S., Chang, A., Boyer, H. & Helling, R. (1973) Proc. Natl. Acad. Sci. USA 70, 3240–3244]. This extraordinary value was due to the union of still scarce knowledge of the new research techniques and genius and vision to apply them in novel, valuable ways. As in other sciences, star bioscientists were very protective of their techniques, ideas, and discoveries in the early years of the revolution, tending to collaborate more within their own institution, which slowed diffusion to other scientists. Close, bench-level working ties between stars and firm scientists were needed to accomplish commercialization of the breakthroughs. Where and when star scientists were actively producing publications is a key predictor of where and when commercial firms began to use biotechnology. The extent of collaboration by a firm’s scientists with stars is a powerful predictor of its success: for an average firm, 5 articles coauthored by an academic star and the firm’s scientists result in about 5 more products in development, 3.5 more products on the market, and 860 more employees. Articles by stars collaborating with or employed by firms have significantly higher rates of citation than other articles by the same or other stars. The U.S. scientific and economic infrastructure has been particularly effective in fostering and commercializing the bioscientific revolution. These results let us see the process by which scientific breakthroughs become economic growth and consider implications for policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic transformation of Belgian endive (Cichorium intybus) and carrot (Daucus carota) by Agrobacterium rhizogenes resulted in a transformed phenotype, including annual flowering. Back-crossing of transformed (R1) endive plants produced a line that retained annual flowering in the absence of the other traits associated with A. rhizogenes transformation. Annualism was correlated with the segregation of a truncated transferred DNA (T-DNA) insertion. During vegetative growth, carbohydrate reserves accumulated normally in these annuals, and they were properly mobilized prior to anthesis. The effects of individual root-inducing left-hand T-DNA genes on flowering were tested in carrot, in which rolC (root locus) was the primary promoter of annualism and rolD caused extreme dwarfism. We discuss the possible adaptive significance of this attenuation of the phenotypic effects of root-inducing left-hand T-DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in a persistent impairment of proliferation when the cells are subcultured at low density and a greatly increased probability of neoplastic transformation in assays for transformation. These properties, along with the large accumulation of age pigment bodies in the confluent cells, are cardinal cellular characteristics of aging in organisms and validate the system as a model of cellular aging. Two cultures labeled alpha and beta were obtained after prolonged confluence; both were dominated by cells that were both slowed in growth at low population density and enhanced in growth capacity at high density, a marker of neoplastic transformation. An experiment was designed to study the reversibility of these age-related properties by serial subculture at low density of the two uncloned cultures and their progeny clones derived from assuredly single cells. Both uncloned cultures had many transformed cells and a reduced growth rate on subculture. Serial subculture resulted in a gradual increase in growth rates of both populations, but a reversal of transformation only in the alpha population. The clones originating from both populations varied in the degree of growth impairment and neoplastic transformation. None of the alpha clones increased in growth rate on low density passage nor did the transformed clones among them revert to normal growth behavior. The fastest growing beta clone was originally slower than the control clone, but caught up to it after four weekly subcultures. The other beta clones retained their reduced growth rates. Four of the five beta clones, including the fastest grower, were transformed, and none reverted on subculture. We conclude that the apparent reversal of impaired growth and transformation in the uncloned parental alpha population resulted from the selective growth at low density of fast growing nontransformed clones. The reversal of impaired growth in the uncloned parental beta population was also the result of selective growth of fast growing clones, but in this case they were highly transformed so no apparent reversal of transformation occurred. The clonal results indicate that neither the impaired growth nor the neoplastic transformation found in aging cells is reversible. We discuss the possible contribution of epigenetic and genetic processes to these irreversible changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major intermediaries in signal transduction pathways are pp60v-sre family tyrosine kinases and heterotrimeric guanine nucleotide-binding proteins. In Rat-1 fibroblasts transformed by the v-src oncogene, endothelin-1 (ET-1)-induced inositol 1,4,5-trisphosphate accumulation is increased 6-fold, without any increases in the numbers of ET-1 receptors or in the response to another agonist, thrombin. This ET-1 hyperresponse can be inhibited by an antibody directed against the carboxyl terminus of the Gq/G11 alpha subunit, suggesting that the Gq/G11 protein couples ET-1 receptors to phospholipase C (PLC). While v-src transformation did not increase the expression of the Gq/G11 alpha subunit, immunoblotting with anti-phosphotyrosine antibodies and phosphoamino acid analysis demonstrated that the Gq/G11 alpha subunit becomes phosphorylated on tyrosine residues in v-src-transformed cells. Moreover, when the Gq/G11 protein was extracted from control and transformed cell lines and reconstituted with exogenous PLC, AIF*4-stimulated Gq/G11 activity was markedly increased in extracts from v-src-transformed cells. Our results demonstrate that the process of v-src transformation can increase the tyrosine phosphorylation state of the Gq/G11 alpha-subunit in intact cells and that the process causes an increase in the Gq/G11 alpha-subunit's ability to stimulate PLC following activation with AIF-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many basic-helix-loop-helix-leucine zipper (b-HLH-LZ) proteins, including the Myc family and non-Myc family, bind a common DNA sequence CACGTG, yet have quite different biological actions. Myc binds this sequence as a heterodimer with Max in the activation of both transcription and transformation. The Myc family members Mad and Mxi1 are known to suppress Myc-induced transcription and transformation and to dimerize with Max to form ternary complexes with the mammalian Sin3 transcriptional corepressor (mSin3). The b-HLH-LZ domain of TFEB, which cannot heterodimerize within the Myc family, does not suppress Myc-induced transcription or transformation. However, transfer of a 25- to 36-aa region from Mad or Mxi1, which interacts with mSin3, to the b-HLH-LZ of TFEB, mediated profound suppression of Myc-induced transcription and transformation. These results suggest that the DNA binding specificities of the Myc family and non-Myc family b-HLH-LZ proteins, in the context of the cellular genes involved in Myc-induced transformation, are shared. The results also demonstrate that targeting mSin3 to CACGTG sites via a non-Myc family DNA binding domain is sufficient to oppose Myc activity in growth regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potent transforming activity of membrane-targeted Raf-1 (Raf-CAAX) suggests that Ras transformation is triggered primarily by a Ras-mediated translocation of Raf-1 to the plasma membrane. However, whereas constitutively activated mutants of Ras [H-Ras(61L) and K-Ras4B(12V)] and Raf-1 (DeltaRaf-22W and Raf-CAAX) caused indistinguishable morphologic and growth (in soft agar and nude mice) transformation of NIH 3T3 fibroblasts, only mutant Ras caused morphologic transformation of RIE-1 rat intestinal cells. Furthermore, only mutant Ras-expressing RIE-1 cells formed colonies in soft agar and developed rapid and progressive tumors in nude mice. We also observed that activated Ras, but not Raf-1, caused transformation of IEC-6 rat intestinal and MCF-10A human mammary epithelial cells. Although both Ras- and DeltaRaf-22W-expressing RIE-1 cells showed elevated Raf-1 and mitogen-activated protein (MAP) kinase activities, only Ras-transformed cells produced secreted factors that promoted RIE-1 transformation. Incubation of untransformed RIE-1 cells in the presence of conditioned medium from Ras-expressing, but not DeltaRaf-22W-expressing, cells caused a rapid and stable morphologic transformation that was indistinguishable from the morphology of Ras-transformed RIE-1 cells. Thus, induction of an autocrine growth mechanism may distinguish the transforming actions of Ras and Raf. In summary, our observations demonstrate that oncogenic Ras activation of the Raf/MAP kinase pathway alone is not sufficient for full tumorigenic transformation of RIE-1 epithelial cells. Thus, Raf-independent signaling events are essential for oncogenic Ras transformation of epithelial cells, but not fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence.