922 resultados para Automobile driving at night.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis study is a systematic investigation of information processing at sleep onset, using auditory event-related potentials (ERPs) as a test of the neurocognitive model of insomnia. Insomnia is an extremely prevalent disorder in society resulting in problems with daytime functioning (e.g., memory, concentration, job performance, mood, job and driving safety). Various models have been put forth in an effort to better understand the etiology and pathophysiology of this disorder. One of the newer models, the neurocognitive model of insomnia, suggests that chronic insomnia occurs through conditioned central nervous system arousal. This arousal is reflected through increased information processing which may interfere with sleep initiation or maintenance. The present thesis employed event-related potentials as a direct method to test information processing during the sleep-onset period. Thirteen poor sleepers with sleep-onset insomnia and 1 2 good sleepers participated in the present study. All poor sleepers met the diagnostic criteria for psychophysiological insomnia and had a complaint of problems with sleep initiation. All good sleepers reported no trouble sleeping and no excessive daytime sleepiness. Good and poor sleepers spent two nights at the Brock University Sleep Research Laboratory. The first night was used to screen for sleep disorders; the second night was used to investigate information processing during the sleep-onset period. Both groups underwent a repeated sleep-onsets task during which an auditory oddball paradigm was delivered. Participants signalled detection of a higher pitch target tone with a button press as they fell asleep. In addition, waking alert ERPs were recorded 1 hour before and after sleep on both Nights 1 and 2.As predicted by the neurocognitive model of insomnia, increased CNS activity was found in the poor sleepers; this was reflected by their smaller amplitude P2 component seen during wake of the sleep-onset period. Unlike the P2 component, the Nl, N350, and P300 did not vary between the groups. The smaller P2 seen in our poor sleepers indicates that they have a deficit in the sleep initiation processes. Specifically, poor sleepers do not disengage their attention from the outside environment to the same extent as good sleepers during the sleep-onset period. The lack of findings for the N350 suggest that this sleep component may be intact in those with insomnia and that it is the waking components (i.e., Nl, P2) that may be leading to the deficit in sleep initiation. Further, it may be that the mechanism responsible for the disruption of sleep initiation in the poor sleepers is most reflected by the P2 component. Future research investigating ERPs in insomnia should focus on the identification of the components most sensitive to sleep disruption. As well, methods should be developed in order to more clearly identify the various types of insomnia populations in research contexts (e.g., psychophysiological vs. sleep-state misperception) and the various individual (personality characteristics, motivation) and environmental factors (arousal-related variables) that influence particular ERP components. Insomnia has serious consequences for health, safety, and daytime functioning, thus research efforts should continue in order to help alleviate this highly prevalent condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent studies have described the period of impaired alertness and performance known as sleep inertia that occurs upon awakening from a full night of sleep. They report that sleep inertia dissipates in a saturating exponential manner, the exact time course being task dependent, but generally persisting for one to two hours. A number of factors, including sleep architecture, sleep depth and circadian variables are also thought to affect the duration and intensity. The present study sought to replicate their findings for subjective alertness and reaction time and also to examine electrophysiological changes through the use of event-related potentials (ERPs). Secondly, several sleep parameters were examined for potential effects on the initial intensity of sleep inertia. Ten participants spent two consecutive nights and subsequent mornings in the sleep lab. Sleep architecture was recorded for a fiiU nocturnal episode of sleep based on participants' habitual sleep patterns. Subjective alertness and performance was measured for a 90-minute period after awakening. Alertness was measured every five minutes using the Stanford Sleepiness Scale (SSS) and a visual analogue scale (VAS) of sleepiness. An auditory tone also served as the target stimulus for an oddball task designed to examine the NlOO and P300 components ofthe ERP waveform. The five-minute oddball task was presented at 15-minute intervals over the initial 90-minutes after awakening to obtain six measures of average RT and amplitude and latency for NlOO and P300. Standard polysomnographic recording were used to obtain digital EEG and describe the night of sleep. Power spectral analyses (FFT) were used to calculate slow wave activity (SWA) as a measure of sleep depth for the whole night, 90-minutes before awakening and five minutes before awakening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Night view of Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Night view of Memorial Hall, Chapman College, Orange, California.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Night view of North Morlan Residence Hall, Chapman College, Orange, California, ca. 1969. Written on back: "Phto by Ardon Alger 68-69"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two photograph negatives of Donald Ziraldo driving a tractor through vineyards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt from Jas. Murphy, St. Catharines for driving, April 13, 1887.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La polyconsommation d’alcool et de cannabis est rapportée par un grand nombre de jeunes adultes canadiens (Flight, 2007). Les recherches épidémiologiques suggèrent que le statut de polyconsommateur est associé à certains comportements à risque, dont la consommation excessive d’alcool et la conduite d’un véhicule automobile sous l’influence de l’alcool (Jones et al. 2001; Mohler-Kuo, et al. 2003; Shillington & Clapp, 2006). Les études qui soutiennent le risque accru de comportements à risque pour les polyconsommateurs se focalisent sur l’effet des substances. En rupture avec cette approche, ce mémoire présente une étude situationnelle de la polyconsommation en examinant l’effet du statut de polyconsommateur et, pour ceux-ci l’effet de la consommation simultanée d’alcool et de cannabis, en situant l’action dans son contexte de survenu et en examinant la contribution du contexte. La probabilité d’avoir conduit une voiture sous l’influence de l’alcool et d’avoir consommé excessivement de l’alcool sera examinée auprès d’étudiants universitaires. La contribution respective des substances, des situations et de l’expérience de la vie universitaire sera examinée. La méthodologie employée repose sur la construction de modèles de régression logistique multiniveaux, à la fois chez l’ensemble des buveurs (10 747 occasions, nichées dans 4396 buveurs) et dans le sous-échantillon des polyconsommateurs (2311 occasions de consommation d’alcool, nichées dans 880 polyconsommateurs). Les données sont issues de l’Enquête sur les campus canadiens (2004), menée auprès d’un échantillon représentatif de 6282 étudiants issus de 40 universités. Le statut de polyconsommateur est associé à la consommation excessive d’alcool, mais pas à la conduite d’une voiture suite à la consommation. Cependant, la consommation simultanée d’alcool et de cannabis n’est pas associée à un risque plus élevé de consommer excessivement de l’alcool, et est négativement associée à la conduite d’une voiture après la consommation. Plusieurs caractéristiques situationnelles sont associées aux deux comportements à l’étude et diminuent la force d’association entre ces comportements et le statut de polyconsommateur.