938 resultados para Autocatalytic kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas-phase rate coefficient for the reaction between OH radicals and CH3SCH2Cl (MCDMS) was determined to be (2.5±1.3)×10−12 cm3 molecule−1 s−1 using the discharge–flow kinetic technique. An estimate of ≈10−10 cm3 molecule−1 s−1 was obtained for the rate coefficient for reaction of Cl with MCDMS. It would appear that the reaction with OH is not the main loss process for CH3SCH2Cl in the marine boundary layer. The possible implications for the MBL of halogen-promoted oxidation of dimethylsulphide are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gas-phase kinetics study of the atmospherically important reaction between Cl2 and dimethyl sulfide (DMS)Cl2 + CH3SCH3 → productshas been made using a flow-tube interfaced to a photoelectron spectrometer. The rate constant for this reaction has been measured at 1.6 and 3.0 torr at T = (294 ± 2) K as (3.4 ± 0.7) × 10−14 cm3 molecule−1 s−1. Reaction (1) has been found to proceed via an intermediate, (CH3)2SCl2, to give CH3SCH2Cl and HCl as the products. The mechanism of this reaction and the structure of the intermediate were investigated using electronic structure calculations. A comparison of the mechanisms of the reactions between Cl atoms and DMS, and Cl2 and DMS has been made and the relevance of the results to atmospheric chemistry is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of temperature on the degradation of blackcurrant anthocyanins in a model juice system was determined over a temperature range of 4–140 °C. The thermal degradation of anthocyanins followed pseudo first-order kinetics. From 4–100 °C an isothermal method was used to determine the kinetic parameters. In order to mimic the temperature profile in retort systems, a non-isothermal method was applied to determine the kinetic parameters in the model juice over the temperature range 110–140 °C. The results from both isothermal and non-isothermal methods fit well together, indicating that the non-isothermal procedure is a reliable mathematical method to determine the kinetics of anthocyanin degradation. The reaction rate constant (k) increased from 0.16 (±0.01) × 10−3 to 9.954 (±0.004) h−1 at 4 and 140 °C, respectively. The temperature dependence of the rate of anthocyanin degradation was modelled by an extension of the Arrhenius equation, which showed a linear increase in the activation energy with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130◦C, 138◦C, 140◦C and 150◦C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two C H bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid–gas–solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol−1 to 368 kJ mol−1 for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control and optimization of flavor is the ultimate challenge for the food and flavor industry. The major route to flavor formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compd. The complexity of the reaction means that researchers turn to kinetic modeling in order to understand the control points of the reaction and to manipulate the flavor profile. Studies of the kinetics of flavor formation have developed over the past 30 years from single- response empirical models of binary aq. systems to sophisticated multi-response models in food matrixes, based on the underlying chem., with the power to predict the formation of some key aroma compds. This paper discusses in detail the development of kinetic models of thermal generation of flavor and looks at the challenges involved in predicting flavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotaxis is one of the best characterised signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterised the properties of the chemosensory response of Rhodobacter sphaeroides, an -proteobacterium with multiple chemotaxis pathways, under two growth conditions allowing the effects of protein expression levels and cell architecture to be investigated. Using tethered cell assays we measured the responses of the system to step changes in concentration of the attractant propionate and show that, independently of the growth conditions, R. sphaeroides is chemotactic over at least five orders of magnitude and has a sensing profile following Weber’s law. Mathematical modelling also shows that, like E. coli, R. sphaeroides is capable of showing Fold-Change Detection (FCD). Our results indicate that general features of bacterial chemotaxis such as the range and sensitivity of detection, adaptation times, adherence to Weber’s law and the presence of FCD may be integral features of chemotaxis systems in general, regardless of network complexity, protein expression levels and cellular architecture across different species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major pathways contribute to Ras-proximate-1-mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbβ3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI(-/-) blood, even in the presence of exogenous adenosine diphosphate and thromboxane A(2). In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI(-/-) mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozonolysis of methyl oleate monolayers at the air–water interface results in surprisingly rapid loss of material through cleavage of the C[double bond, length as m-dash]C bond and evaporation/dissolution of reaction products. We determine using neutron reflectometry a rate coefficient of (5.7 ± 0.9) × 10−10 cm2 molecule−1 s−1 and an uptake coefficient of [similar]3 × 10−5 for the oxidation of a methyl ester monolayer: the atmospheric lifetime is [similar]10 min. We obtained direct experimental evidence that <2% of organic material remains at the surface on atmospheric timescales. Therefore known long atmospheric residence times of unsaturated fatty acids suggest that these molecules cannot be present at the interface throughout their ageing cycle, i.e. the reported atmospheric longevity is likely to be attributed to presence in the bulk and viscosity-limited reactive loss. Possible reaction products were characterized by ellipsometry and uncertainties in the atmospheric fate of organic surfactants such as oleic acid and its methyl ester are discussed. Our results suggest that a minor change to the structure of the molecule (fatty acid vs. its methyl ester) considerably impacts on reactivity and fate of the organic film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature, pressure, gas stoichiometry, and residence time were varied to control the yield and product distribution of the palladium-catalyzed aminocarbonylation of aromatic bromides in both a silicon microreactor and a packed-bed tubular reactor. Automation of the system set points and product sampling enabled facile and repeatable reaction analysis with minimal operator supervision. It was observed that the reaction was divided into two temperature regimes. An automated system was used to screen steady-state conditions for offline analysis by gas chromatography to fit a reaction rate model. Additionally, a transient temperature ramp method utilizing online infrared analysis was used, leading to more rapid determination of the reaction activation energy of the lower temperature regimes. The entire reaction spanning both regimes was modeled in good agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer-by-layer (LBL) films of nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) have been prepared, whose surface charge has been evaluated using surface potential measurements. From adsorption kinetics results, we obtained the immersion time of similar to 40 s, which was used to assemble layers of NiTsPc. The effect of gold (Au) and aluminum (Al) electrodes on the charge behavior was examined. We found that the surface potential (i.e. surface charge) was inverted each time a layer of PAH was alternated with another of NiTsPc molecules for the two types of electrodes, which was attributed to charge overcompensation between positive charges of PAH molecules, and negative charges from NiTsPc molecules. (C) 2009 Elsevier B.V. All rights reserved.