963 resultados para Austerlitz, Battle of, Czech Republic, 1805.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present descriptions of a new order (Ranunculo cortusifolii-Geranietalia reuteri and of a new alliance (Stachyo lusitanicae-Cheirolophion sempervirentis) for the herbaceous fringe communities of Macaronesia and of the southwestern Iberian Peninsula, respectively. A new alliance, the Polygalo mediterraneae-Bromion erecti (mesophilous post-cultural grasslands), was introduced for the Peninsular Italy. We further validate and typify the Armerietalia rumelicae (perennial grasslands supported by nutrient-poor on siliceous bedrocks at altitudes characterized by the submediterranean climate of central-southern Balkan Peninsula), the Securigero-Dasypyrion villosae (lawn and fallow-land tall-grass annual vegetation of Italy), and the Cirsio vallis-demoni-Nardion (acidophilous grasslands on siliceous substrates of the Southern Italy). Nomenclatural issues (validity, legitimacy, synonymy, formal corrections) have been discussed and clarified for the following names: Brachypodio-Brometalia, Bromo pannonici-Festucion csikhegyensis, Corynephoro-Plantaginion radicatae, Heleochloion, Hieracio-Plantaginion radicatae, Nardetea strictae, Nardetalia strictae, Nardo-Callunetea, Nardo-Galion saxatilis, Oligo-Bromion, Paspalo-Heleochloetalia, Plantagini-Corynephorion and Scorzoneret alia villosae. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil carbon (C) stock of the Republic of Ireland is estimated to have been 2048 Mt in 1990 and 2021 Mt in 2000. Peat holds around 53% of the soil C stock, but on 17% of the land area. The C density of soils (t C ha-1) is mapped at 2 km*2 km resolution. The greatest soil C densities occur where deep raised bogs are the dominant soil; in these grid squares C density can reach 3000 t C ha-1. Most of the loss of soil C between 1990 and 2000-up to 23 Mt C (1% of 1990 soil C stock)-was through industrial peat extraction. The average annual change in soil C stocks from 1990 to 2000 due to land use change was estimated at around 0.02% of the 1990 stock. Considering uncertainties in the data used to calculate soil C stocks and changes, the small average annual 'loss' could be regarded as 'no change'.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The giant liver fluke, Fascioloides magna, liver parasite of free-living and domestic ruminants of Europe and North America, was analysed in order to determine the origin of European populations and to reveal the biogeography of this originally North American parasite on the European continent. The previously selected variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamid dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The phylogenetic trees and haplotype networks were constructed and the level of genetic structuring was evaluated using population genetic tools. In F. magna individuals originating from all European natural foci (Italy, Czech Republic, Danube floodplain forests) and from four of five major North American enzootic areas, 16 cox1 and 18 nad1 haplotypes were determined. The concatenated sequence set produced 22 distinct haplotypes. The European fluke populations were less diverse than those from North America in that they contained proportionately fewer haplotypes (8), while more substantial level of genetic diversity and higher number of haplotypes (15) were recorded in North America. Only one haplotype was shared between the European (Italy) and North American (USA/Oregon and Canada/Alberta) flukes supporting a western North American origin of the Italian F. magna population. Haplotypes found in Italy were distinct from those determined in the remaining European localities what indicates that introduction of F. magna onto the European continent is a result of more than one event. In Czech focus, a south-eastern US origin of giant liver fluke was revealed. Identical haplotypes, common for parasites from Czech Republic and from expanding focus of Danube floodplain forests, implies introduction of F. magna to the Danube region from an already established Czech focus.