985 resultados para Assentamentos humanos - Bauru (SP)
Resumo:
A specimen of downy mildew on leaves of Sphagneticola trilobata found in northern Queensland was identified by a systematic approach as a novel species of Plasmopara. A new species, Plasmopara sphagneticolae, is proposed for this specimen, which differs from other species of Plasmopara by morphology, host range, and sequence data from nuclear-ribosomal DNA and mitochondrial DNA. Plasmopara sphagneticolae, together with P. halstedii, are downy mildews found on host species in the tribe Heliantheae (Asteraceae). Plasmopara halstedii causes downy mildew on Helianthus annuus, and is not present on sunflower in Australia. Phylogenetic analysis of the large subunit region of ribosomal DNA showed that P. sphagneticolae was sister to P. halstedii on sunflower.
Resumo:
The gall rusts on Acacia spp. and Paraserianthes falcataria are caused by species of Uromycladium. Morphology and a phylogenetic analysis of four loci from ribosomal (SSU, ITS, LSU) and mitochondrial (CO3) DNA, showed that the rust on P. falcataria differed from U. tepperianum. Uromycladium falcatarium sp. nov. is described to accommodate this taxon, which can be differentiated from other species of Uromycladium by teliospore wall morphology, host genus and DNA sequence data.
Resumo:
This greenhouse study investigated the efficacy of acibenzolar-S-methyl (Bion®) treatment of lower leaves of passionfruit, (Passiflora edulis f. sp. flavicarpa), on Passionfruit woodiness disease and activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase after inoculation with passionfruit woodiness virus (PWV). All Bion® concentrations reduced disease symptoms, but the concentration of 0.025 g active ingredient (a.i.)/l was the most effective, reducing disease severity in systemic leaves by 23, 29 and 30 compared with water-treated controls at 30, 40 and 50 days post inoculation (dpi) with PWV, respectively. Correspondingly, relative virus concentration as determined by DAS-ELISA in the upper, untreated leaves (new growth) above the site of inoculation at 50 dpi was reduced by 17 and 22 in plants treated with 0.025 and 0.05 g a.i./l, respectively. Bion® treatment and subsequent inoculation with PWV increased chitinase and β-1,3-glucanase activities in the new leaves above the site of inoculation at 30 dpi with PWV. It was concluded that optimal protective Bion® treatment concentrations were 0.025 and 0.05 g a.i./l.
Resumo:
The complete genome of an Australian isolate of zantedeschia mild mosaic virus (ZaMMV) causing mosaic symptoms on Alocasia sp. (designated ZaMMVAU) was cloned and sequenced. The genome comprises 9942 nucleotides (excluding the poly-A tail) and encodes a polyprotein of 3167 amino acids. The sequence is most closely related to a previously reported ZaMMV isolate from Taiwan (ZaMMV-TW), with 82 and 86 % identity at the nucleotide and amino acid level, respectively. Unlike the amino acid sequence of ZaMMV-TW, however, ZaMMV-AU does not contain a polyglutamine stretch at the N-terminus of the coat-protein-coding region upstream of the DAG motif. This is the first report of ZaMMV from Australia and from Alocasia sp.
Resumo:
Background & objectives: Periplasmic copper and zinc superoxide dismutase (Cu,Zn-SOD or SodC) is an important component of the antioxidant shield which protects bacteria from the phagocytic oxidative burst. Cu,Zn-SODs protect Gram-negative bacteria against oxygen damage which have also been shown to contribute to the pathogenicity of these bacterial species. We report the presence of SodC in drug resistant Salmonella sp. isolated from patients suffering from enteric fever. Further sodC was amplified, cloned into Escherichia coli and the nucleotide sequence and amino acid sequence homology were compared with the standard strain Salmonella Typhimurium 14028. Methods: Salmonella enterica serovar Typhi (S. Typhi) and Salmonellaenterica serovar Paratyphi (S. Paratyphi) were isolated and identified from blood samples of the patients. The isolates were screened for the presence of Cu, Zn-SOD by PAGE using KCN as inhibitor of Cu,Zn-SOD. The gene (sodC) was amplified by PCR, cloned and sequenced. The nucleotide and amino acid sequences of sodC were compared using CLUSTAL X.Results: SodC was detected in 35 per cent of the Salmonella isolates. Amplification of the genomic DNA of S. Typhi and S. Paratyphi with sodC specific primers resulted in 519 and 515 bp amplicons respectively. Single mutational difference at position 489 was observed between thesodC of S. Typhi and S. Paratyphi while they differed at 6 positions with the sodC of S. Typhimurium 14028. The SodC amino acid sequences of the two isolates were homologous but 3 amino acid difference was observed with that of standard strain S. Typhimurium 14028.Interpretation & conclusions: The presence of SodC in pathogenic bacteria could be a novel candidate as phylogenetic marker.
Resumo:
The influence of concentration and size of sp (2) cluster on the transport properties and electron field emissions of amorphous carbon films have been investigated. The observed insulating to metallic behaviour from reduced activation energy derived from transport measurement and threshold field for electron emission of a-C films can be explained in terms of improvements in the connectivity between sp (2) clusters. The connectivity is resulted by the cluster concentration and size. The concentration and size of sp (2) content cluster is regulated by the coalescence of carbon globules into clusters, which evolves with deposition conditions.
Resumo:
Yhteenveto: Acinetobacter sp. metsäteollisuuden jätevesien biologisessa fosforinpoistossa
Resumo:
A bacterial strain belonging to the genus Bacillus isolated by enrichment culture technique using morphine as a sole source of carbon transforms morphine and codeine into 14-hydroxymorphinone and 14-hydroxycodeinone as major and 14-hydroxymorphine and 14-hydroxycodeine as minor metabolites, respectively. When the N-methyl group in morphine and codeine are replaced by higher alkyl groups, the organism still retains its ability to carry out 14-hydroxylation as well as oxidation of the C-6-hydroxyl group in these N-variants, although the level of metabolites formed are considerably low. The organism readily transforms dihydromorphine and dihydrocodeine into only dihydromorphinone and dihydrocodeinone, respectively; suggesting that the 7,8-double bond is a necessary structural feature to carry out 14-hydroxylation reaction. The cell free extract (20,000 x g supernatant), prepared from morphine grown cells, transforms morphine into 14-hydroxymorphinone in the presence of NAD(+), but fails to show activity against testosterone. However, the cell free extract prepared from testosterone grown cells contains significant levels of 17 beta- hydroxysteroid dehydrogenase but shows no activity against morphine.
Resumo:
Molybdenum trioxide (MoO3) catalyzed efficient oxidative cross-dehydrogenative-coupling (CDC) method for C-H functionalization of N-aryl tetrahydroisoquinolines has been explored. This user-friendly method of synthesizing alpha-aminophosphonates employs 1.1 equiv of dialkyl-H-phosphonate under aerobic condition. Formation of new C-P bonds from unfunctionalized starting materials under environmentally benign conditions provides an excellent avenue for the synthesis of biologically active alpha-aminophosphonates. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.