921 resultados para Artificial Information Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a by-product of the ‘information revolution’ which is currently unfolding, lifetimes of man (and indeed computer) hours are being allocated for the automated and intelligent interpretation of data. This is particularly true in medical and clinical settings, where research into machine-assisted diagnosis of physiological conditions gains momentum daily. Of the conditions which have been addressed, however, automated classification of allergy has not been investigated, even though the numbers of allergic persons are rising, and undiagnosed allergies are most likely to elicit fatal consequences. On the basis of the observations of allergists who conduct oral food challenges (OFCs), activity-based analyses of allergy tests were performed. Algorithms were investigated and validated by a pilot study which verified that accelerometer-based inquiry of human movements is particularly well-suited for objective appraisal of activity. However, when these analyses were applied to OFCs, accelerometer-based investigations were found to provide very poor separation between allergic and non-allergic persons, and it was concluded that the avenues explored in this thesis are inadequate for the classification of allergy. Heart rate variability (HRV) analysis is known to provide very significant diagnostic information for many conditions. Owing to this, electrocardiograms (ECGs) were recorded during OFCs for the purpose of assessing the effect that allergy induces on HRV features. It was found that with appropriate analysis, excellent separation between allergic and nonallergic subjects can be obtained. These results were, however, obtained with manual QRS annotations, and these are not a viable methodology for real-time diagnostic applications. Even so, this was the first work which has categorically correlated changes in HRV features to the onset of allergic events, and manual annotations yield undeniable affirmation of this. Fostered by the successful results which were obtained with manual classifications, automatic QRS detection algorithms were investigated to facilitate the fully automated classification of allergy. The results which were obtained by this process are very promising. Most importantly, the work that is presented in this thesis did not obtain any false positive classifications. This is a most desirable result for OFC classification, as it allows complete confidence to be attributed to classifications of allergy. Furthermore, these results could be particularly advantageous in clinical settings, as machine-based classification can detect the onset of allergy which can allow for early termination of OFCs. Consequently, machine-based monitoring of OFCs has in this work been shown to possess the capacity to significantly and safely advance the current state of clinical art of allergy diagnosis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested a developmental cascade model of peer rejection, social information processing (SIP), and aggression using data from 585 children assessed at 12 time points from kindergarten through Grade 3. Peer rejection had direct effects on subsequent SIP problems and aggression. SIP had direct effects on subsequent peer rejection and aggression. Aggression had direct effects on subsequent peer rejection. Each construct also had indirect effects on each of the other constructs. These findings advance the literature beyond a simple mediation approach by demonstrating how each construct effects changes in the others in a snowballing cycle over time. The progressions of SIP problems and aggression cascaded through lower liking, and both better SIP skills and lower aggression facilitated the progress of social preference. Findings are discussed in terms of the dynamic, developmental relations among social environments, cognitions, and behavioral adjustment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Implementing new practices, such as health information technology (HIT), is often difficult due to the disruption of the highly coordinated, interdependent processes (e.g., information exchange, communication, relationships) of providing care in hospitals. Thus, HIT implementation may occur slowly as staff members observe and make sense of unexpected disruptions in care. As a critical organizational function, sensemaking, defined as the social process of searching for answers and meaning which drive action, leads to unified understanding, learning, and effective problem solving -- strategies that studies have linked to successful change. Project teamwork is a change strategy increasingly used by hospitals that facilitates sensemaking by providing a formal mechanism for team members to share ideas, construct the meaning of events, and take next actions. METHODS: In this longitudinal case study, we aim to examine project teams' sensemaking and action as the team prepares to implement new information technology in a tiertiary care hospital. Based on management and healthcare literature on HIT implementation and project teamwork, we chose sensemaking as an alternative to traditional models for understanding organizational change and teamwork. Our methods choices are derived from this conceptual framework. Data on project team interactions will be prospectively collected through direct observation and organizational document review. Through qualitative methods, we will identify sensemaking patterns and explore variation in sensemaking across teams. Participant demographics will be used to explore variation in sensemaking patterns. DISCUSSION: Outcomes of this research will be new knowledge about sensemaking patterns of project teams, such as: the antecedents and consequences of the ongoing, evolutionary, social process of implementing HIT; the internal and external factors that influence the project team, including team composition, team member interaction, and interaction between the project team and the larger organization; the ways in which internal and external factors influence project team processes; and the ways in which project team processes facilitate team task accomplishment. These findings will lead to new methods of implementing HIT in hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A framework for adaptive and non-adaptive statistical compressive sensing is developed, where a statistical model replaces the standard sparsity model of classical compressive sensing. We propose within this framework optimal task-specific sensing protocols specifically and jointly designed for classification and reconstruction. A two-step adaptive sensing paradigm is developed, where online sensing is applied to detect the signal class in the first step, followed by a reconstruction step adapted to the detected class and the observed samples. The approach is based on information theory, here tailored for Gaussian mixture models (GMMs), where an information-theoretic objective relationship between the sensed signals and a representation of the specific task of interest is maximized. Experimental results using synthetic signals, Landsat satellite attributes, and natural images of different sizes and with different noise levels show the improvements achieved using the proposed framework when compared to more standard sensing protocols. The underlying formulation can be applied beyond GMMs, at the price of higher mathematical and computational complexity. © 1991-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adolescence is often viewed as a time of irrational, risky decision-making - despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether a terminally ill cancer patient should be actively fed or simply hydrated through subcutaneous or intravenous infusion of isotonic fluids is a matter of ongoing controversy among clinicians involved in the care of these patients. Under the auspices of the European Association for Palliative Care, a committee of experts developed guidelines to help clinicians make a reasonable decision on what type of nutritional support should be provided on a case-by-case basis. It was acknowledged that part of the controversy related to the definition of the terminal cancer patient, since this is a heterogeneous group of patients with different needs, expectations, and potential for a medical intervention. A major difficulty is the prediction of life expectancy and the patient's likely response to vigorous nutritional support. In an attempt to reach a decision on the type of treatment support (artificial nutrition vs. hydration) which would best meet the needs and expectations of the patient, we propose a three-step process: Step I: define the eight key elements necessary to reach a decision: Step II: make the decision; and Step III: reevaluate the patient and the proposed treatment at specified intervals. Step I involves assessing the patient concerning the following: 1) oncological/clinical condition; 2) symptoms; 3) expected length of survival; 4) hydration and nutritional status; 5) spontaneous or voluntary nutrient intake; 6) psychological profile; 7) gut function and potential route of administration; and 8) need for special services based on type of nutritional support prescribed. Step II involves the overall assessment of pros and cons, based on information determined in Step I, in order to reach an appropriate decision based on a well-defined end point (i.e. improvement of quality of life; maintaining patient survival; attaining rehydration). Step III involves the periodic reevaluation of the decision made in Step II based on the proposed goal and the attained result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sometimes, technological solutions to practical problems are devised that conspicuously take into account the constraints to which a given culture is subjecting the particular task or the manner in which it is carried out. The culture may be a professional culture (e.g., the practice of law), or an ethnic-cum-professional culture (e.g., dance in given ethnic cultures from South-East Asia), or, again, a denominational culture prescribing an orthopraxy impinging on everyday life through, for example, prescribed abstinence from given categories of workday activities, or dietary laws. Massimo Negrotti's Theory of the artificial is a convenient framework for discussing some of these techniques. We discuss a few examples, but focus on the contrast of two that are taken from the same cultural background, namely, technological applications in compliance with Jewish Law orthopraxy. •Soya-, mycoprotein- or otherwise derived meat surrogates are an example ofnaturoid; they emulate the flavours and olfactory properties, as well as the texture and the outer and inner appearance, of the meat product (its kind, cut, form) they set out to emulate (including amenability to cooking in the usual manner for the model), while satisfying cultural dietary prohibitions. •In contrast, the Sabbath Notebook, a writing surrogate we describe in this paper, is atechnoid: it emulates a technique (writing to store alphanumeric information), while satisfying the prohibition of writing at particular times of the liturgical calendar (the Sabbath and the major holidays).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Belief revision is a well-research topic within AI. We argue that the new model of distributed belief revision as discussed here is suitable for general modelling of judicial decision making, along with extant approach as known from jury research. The new approach to belief revision is of general interest, whenever attitudes to information are to be simulated within a multi-agent environment with agents holding local beliefs yet by interaction with, and influencing, other agents who are deliberating collectively. In the approach proposed, it's the entire group of agents, not an external supervisor, who integrate the different opinions. This is achieved through an election mechanism, The principle of "priority to the incoming information" as known from AI models of belief revision are problematic, when applied to factfinding by a jury. The present approach incorporates a computable model for local belief revision, such that a principle of recoverability is adopted. By this principle, any previously held belief must belong to the current cognitive state if consistent with it. For the purposes of jury simulation such a model calls for refinement. Yet we claim, it constitutes a valid basis for an open system where other AI functionalities (or outer stiumuli) could attempt to handle other aspects of the deliberation which are more specifi to legal narrative, to argumentation in court, and then to the debate among the jurors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the purposes of starting to tackle, within artificial intelligence (AI), the narrative aspects of legal narratives in a criminal evidence perspective, traditional AI models of narrative understanding can arguably supplement extant models of legal narratives from the scholarly literature of law, jury studies, or the semiotics of law. Not only: the literary (or cinematic) models prominent in a given culture impinge, with their poetic conventions, on the way members of the culture make sense of the world. This shows glaringly in the sample narrative from the Continent-the Jama murder, the inquiry, and the public outcry-we analyse in this paper. Apparently in the same racist crime category as the case of Stephen Lawrence's murder (in Greenwich on 22 April 1993) with the ensuing still current controversy in the UK, the Jama case (some 20 years ago) stood apart because of a very unusual element: the eyewitnesses identifying the suspects were a group of football referees and linesmen eating together at a restaurant, and seeing the sleeping man as he was set ablaze in a public park nearby. Professional background as witnesses-cum-factfinders in a mass sport, and public perceptions of their required characteristics, couldn't but feature prominently in the public perception of the case, even more so as the suspects were released by the magistrate conducting the inquiry. There are sides to this case that involve different expected effects in an inquisitorial criminal procedure system from the Continent, where an investigating magistrate leads the inquiry and prepares the prosecution case, as opposed to trial by jury under the Anglo-American adversarial system. In the JAMA prototype, we tried to approach the given case from the coign of vantage of narrative models from AI.