939 resultados para Antibody-responses
Resumo:
Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.
Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.
Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.
Resumo:
The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.
Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.
One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.
Resumo:
Unit activity was recorded from the midbrain and pons of 40 freely moving rats in an appetitive classical conditioning situation. Responses to auditory stimuli were observed from 100 units before and during a conditioning procedure in which presentation of food occurred 1 sec after the onset of the auditory stimulus. Conditioned unit responses (i.e., spike rate accelerations or decelerations) were considered to be positive when 1) no similar responses appeared prior to conditioning, and 2) latencies were equal to or less than those of sensory responses derived from the inferior colliculus. Such short latency conditioned unit responses were recorded from 11 probes located in the mid-lateral pert of the ventral region of the brain stem. This region was differentiated from paramedian, far lateral and dorsal parts of the brain stem reticular formation. Conditioned unit responses of considerably longer latencies were recorded from 76 probe located in these other regions. Among the longer latency responses interesting differences appeared in experiments conducted after the first conditioning series was completed. With additional training, units in the "reticular activating system" of midbrain and pons tended to yield stabilized responses in the early portion of the CS-US interval closely related in time to the orientation responses evoked by the CS. In contrast, the responses of units in the limbic midbrain tended to stabilize in the later part of the CS-US interval closely related in time to preparatory responses tied to the US. During extinction when the auditory stimulus was no longer followed by presentation of food, many of the responses were reduced to their pre-conditioning levels. However, there was a tendency for units which had displayed short latency responses on the first conditioning day to be more resistant to extinction than units which had displayed longer latency conditioned responses. The data were interpreted as indicating a local correlate of learning in the reticular formation of midbrain end pons and a separation of the midbrain system into at least two areas: 1) the classical "reticular activating system" related to orienting reactions, and 2) the limbic midbrain areas related to drives and rewards. Because the ventral and mid-lateral area with very short latency conditioned responses was not clearly tied to either of these; it was considered as possibly representing a third division.
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton’s condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton’s K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects shortterm changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton�
Resumo:
Commercial bottom trawls often have sweeps to herd fish into the net. Elevation of the sweeps off the seaf loor may reduce seafloor disturbance, but also reduce herding effectiveness. In both field and laboratory experiments, we examined the behavior of flatfish in response to sweeps. We tested the hypotheses that 1) sweeps are more effective at herding flatfish during the day than at night, when fish are unable to see approaching gear, and that 2) elevation of sweeps off the seafloor reduces herding during the day, but not at night. In sea trials, day catches were greater than night catches for four out of six flatfish species examined. The elevation of sweeps 10 cm significantly decreased catches during the day, but not at night. Laboratory experiments revealed northern rock sole (Lepidopsetta polyxystra) and Pacific halibut (Hippoglossus stenolepis) were more likely to be herded by the sweep in the light, whereas in the dark they tended to pass under or over the sweep. In the light, elevation of the sweep reduced herding, and more fish passed under the sweep. In contrast, in the dark, sweep elevation had little effect upon the number of fish that exhibited herding behavior. The results of both field and laboratory experiments were consistent with the premise that vision is the principle sensory input that controls fish behavior and orientation to trawl gear, and gear performance will differ between conditions where flatfish can see, in contrast to where they cannot see, the approaching gear.