964 resultados para Analytical chemistry|Organic chemistry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A preocupação com a poluição das águas por agrotóxicos tem aumentado, visto que aumentou o número de detecções de agrotóxicos em águas. A falta de avaliação da qualidade da água consumida pela população de áreas rurais onde não existe o abastecimento público de água potável, deve ser considerada, pois essas águas se encontram próximo a áreas de cultivo, onde há intensa aplicação de agrotóxicos. Nessas regiões, o abastecimento de água para as residências e para a irrigação é feito geralmente através das águas de poços. Neste trabalho, um método para determinação dos agrotóxicos carbofurano, clomazona, 2,4-D e tebuconazol em água subterrânea foi desenvolvido e validado. O método utilizou a Extração em Fase Sólida (SPE) e determinação por Cromatografia Líquida de Alta eficiência com Detecção por Arranjo de Diodos (HPLC-DAD) e confirmação por Cromatografia Líquida tandem Espectrometria de Massas (LC-MS/MS). Para a SPE utilizou-se cartuchos C18 de 200 mg, e eluição com 1 mL de metanol. Após a otimização dos parâmetros de extração e separação dos compostos, o método foi validado avaliando-se curva analítica, linearidade, limites de detecção e quantificação, precisão (repetitividade e precisão intermediária) e exatidão (recuperação). Todas as curvas analíticas apresentaram valores de r maiores que 0,99. Os LOQs para o método, considerando a etapa de pré-concentração de 250 vezes, foram de 0,2 µg L -1 para todos os agrotóxicos por HPLC-DAD e, por LC-MS/MS, 4,0 ng L -1 para clomazona, carbofurano e tebuconazol e de 40,0 ng L -1 para 2,4-D. As recuperações foram entre 60,3 e 107,7% para a repetitividade e entre 67,5 e 115,3% para a precisão intermediária, com RSD de 0,8 a 20,7% para todos os compostos por HPLC-DAD. Para o LC-MS/MS a precisão em termos de repetitividade, variou entre 0,97 e 20,7%, e as recuperações entre 67,0 e 108,9%. O método foi aplicado na determinação de agrotóxicos em amostras de águas subterrâneas durante um ano. Nas amostras foram detectados agrotóxicos em níveis de µg L -1 . Dentro do contexto atual da Química Analítica, de desenvolver métodos mais rápidos, que utilizem menor quantidade de solvente, de amostra e com altos fatores de enriquecimento, foi otimizado um método de extração para os agrotóxicos carbofurano, clomazona e tebuconazol utilizando a Microextração Líquido-Líquido Dispersiva (DLLME) e determinação por LC-MS/MS. Foram otimizados alguns parâmetros que influenciam no processo de extração, como: tipo e volume dos solventes dispersores e extratores, tempo de extração, força iônica e velocidade de centrifugação. Nas condições otimizadas, as recuperações para os níveis de concentração entre 0,02 e 2,0 g L -1 variaram entre 62,7 e 120,0%, com valores de RSD entre 1,9 e 9,1%. O LOQ do método foi de 0,02 µg L -1 para todos os compostos. Quando comparado com a SPE se demonstrou rápido, simples, de baixo custo, além de necessitar de menores volumes de amostra para determinação de agrotóxicos em águas. O método mostrou-se adequado à análise dos agrotóxicos em água subterrânea e todos os parâmetros de validação obtidos estão dentro dos limites sugeridos para validação de métodos cromatográficos

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work outlined in this dissertation will allow biochemists and cellular biologists to characterize polyubiquitin chains involved in their cellular environment by following a facile mass spectrometric based workflow. The characterization of polyubiquitin chains has been of interest since their discovery in 1984. The profound effects of ubiquitination on the movement and processing of cellular proteins depend exclusively on the structures of mono and polyubiquitin modifications anchored or unanchored on the protein within the cellular environment. However, structure-function studies have been hindered by the difficulty in identifying complex chain structures due to limited instrument capabilities of the past. Genetic mutations or reiterative immunoprecipitations have been used previously to characterize the polyubiquitin chains, but their tedium makes it difficult to study a broad ubiquitinome. Top-down and middle-out mass spectral based proteomic studies have been reported for polyubiquitin and have had success in characterizing parts of the chain, but no method to date has been successful at differentiating all theoretical ubiquitin chain isomers (ubiquitin chain lengths from dimer to tetramer alone have 1340 possible isomers). The workflow presented here can identify chain length, topology and linkages present using a chromatographic-time-scale compatible, LC-MS/MS based workflow. To accomplish this feat, the strategy had to exploit the most recent advances in top-down mass spectrometry. This included the most advanced electron transfer dissociation (ETD) activation and sensitivity for large masses from the orbitrap Fusion Lumos. The spectral interpretation had to be done manually with the aid of a graphical interface to assign mass shifts because of a lack of software capable to interpret fragmentation across isopeptide linkages. However, the method outlined can be applied to any mass spectral based system granted it results in extensive fragmentation across the polyubiquitin chain; making this method adaptable to future advances in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exosomes released by myeloid-derived suppressor cells (MDSC) are 30 nm in diameter extracellular vesicles that have been shown to carry biologically active proteins as well as ubiquitin molecules. Ubiquitin is known to have many functions, including involvement in the formation of exosomes, although the exact role is highly contested. In the study reported here, the proteome and ubiquitome of MDSC exosomes has been investigated by bottom-up proteomics techniques. This report identifies more than 1000 proteins contained in the MDSC exosome cargo and 489 sites of ubiquitination in more than 300 ubiquitinated proteins based on recognition of glycinylglycine tagged peptides without antibody enrichment. This has allowed extensive chemical and biological characterization of the ubiquitinated cohort compared to that of the entire protein cargo to support hypotheses on the role of ubiquitin in exosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2006

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 µg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological detectors, such as canines, are valuable tools used for the rapid identification of illicit materials. However, recent increased scrutiny over the reliability, field accuracy, and the capabilities of each detection canine is currently being evaluated in the legal system. For example, the Supreme Court case, State of Florida v. Harris, discussed the need for continuous monitoring of canine abilities, thresholds, and search capabilities. As a result, the fallibility of canines for detection was brought to light, as well as a need for further research and understanding of canine detection. This study is two-fold, as it looks to not only create new training aids for canines that can be manipulated for dissipation control, but also investigates canine field accuracy to objects with similar odors to illicit materials. ^ It was the goal of this research to improve upon current canine training aid mimics. Sol-gel polymer training aids, imprinted with the active odor of cocaine, were developed. This novel training aid improved upon the longevity of currently existing training aids, while also provided a way to manipulate the polymer network to alter the dissipation rate of the imprinted active odors. The manipulation of the polymer network could allow handlers to control the abundance of odors presented to their canines, familiarizing themselves to their canine’s capabilities and thresholds, thereby increasing the canines’ strength in court.^ The field accuracy of detection canines was recently called into question during the Supreme Court case, State of Florida v. Jardines, where it was argued that if cocaine’s active odor, methyl benzoate, was found to be produced by the popular landscaping flower, snapdragons, canines will false alert to said flowers. Therefore, snapdragon flowers were grown and tested both in the laboratory and in the field to determine the odors produced by snapdragon flowers; the persistence of these odors once flowers have been cut; and whether detection canines will alert to both growing and cut flowers during a blind search scenario. Results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers and will not alert.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quorum sensing (QS) is a process that allows bacteria to sense the population density of cells around them by communicating with each other via autoinducer molecules. This cross-communication is crucial in the regulation of bacterial processes such as bioluminescence, virulence, and biofilm formation. Previous research by Milburn and Makemson on Vibrio harveyi suggested that in addition of the known biosynthesis of three well-characterized autoinducers, dozens of unknown molecules are also produced and released to the environment by V. harveyi. This study was performed using electrospray tandem mass spectrometry with the purpose of detection and characterization of the extracellular molecules produced by V. harveyi, and assessment of their relationship to QS. A total of 11 molecules were characterized, from which three could be related to QS. These findings provide a glimpse of the nature of novel secondary metabolites produced by V. harveyi and provide the groundwork for further research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation of a certified reference material of polar pesticides in freeze-dried water is described. The pesticides selected were atrazine, simazine, carbaryl, propanil, linuron, fenamiphos and permethrin which were added to 6000 litres of tap water at 50–80 μg · L–1 (200–320 μg · L–1 for permethrin) level in presence of NaCl (2.5 g · L–1) prior lyophilization. After the freeze-drying process the residue was rehomogenized, filled into amber glass bottles and stored at –20 °C, +4 °C and +20 °C. All pesticides were determined by HPLC/diode array detector, except permethrin which was determined by GC/ECD. The results obtained for atrazine, simazine, carbaryl, propanil, linuron and fenamiphos showed no within- or between-bottle inhomogeneity, however the material was non-homogeneous for permethrin and therefore this was withdrawn from further studies. With respect to the stability for over one year, all pesticides were stable at –20 °C. At +4 °C all pesticides were stable for at least 9 months and at +20 °C the stability was demonstrated only during the first month of storage. The content (mass fractions) of atrazine, simazine, carbaryl, propanil and linuron in freeze-dried water (CRM 606) was certified by an interlaboratory testing and a certification campaign.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of my master thesis is developing novel, greener approaches for the cleaning of artworks: such treatment consists in the removal of old varnish layers which tend to discolor or darken with time, thus allowing replacement with a new protecting coat. While protocols presently applied can be effective in the cleaning of the artworks, none of them take into account conservators’ health safety and environmental issues. Thus, using biomass-derived components, which are non-toxic and reusable and/or compostable might bring into the heritage conservation an additional awareness about safety and environmental claiming. The laboratory work for the thesis is a collaborative work between different groups. The biggest part of the work was at the Polymer group where gels were synthesized using Polyhydroxybutyrate (PHB) from sustainable resources and green solvents. The use of the gels might help to reduce the volatilization of solvents and contributes to the localization of the cleaning action. After the preparation of the gels, different characterization methods were used in order to estimate their properties and shelf-life. Finally, the work was completed on the application of the gels on sculpture, coated with undesired layers to be removed. Here, pre-mapping of the areas of interest was realized with different optical techniques, followed by the application of the gels for the cleaning and analyzing the effectiveness of cleaning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural State University of Economics resulted in a computer-assisted learning system (CALS) designed by IT students. The CALS was used in an analytical chemistry course with students majoring in Commodities Management and Expertise (‘expert’ students). To test how effective the technology was, the control and experimental groups were formed. In the control group, learning was done with traditional methods. In the experimental group, it was reinforced by IPBL. A statistical analysis of the results, with an application of Pearson χ 2 test, showed that the cognitive levels in both IT and ‘expert’ experimental groups improved as compared with the control groups. The findings demonstrated that IPBL can significantly enhance learning. It can be implemented in any institution of higher or secondary education that promotes learning, including the CALS development and its use for solving problems in different subject areas.