948 resultados para Alpha-cluster model


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, eta = D(L)(z)(1 + z)(-2)/D(A)(z) = 1, where D(L) and D(A) are, respectively, the luminosity and angular diameter distances. For D(L) we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D(A) distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Delta z < 0.005), thereby allowing a direct test of the DD relation. Since for very low redshifts, D(A)(z) approximate to D(L)(z), we have tested the DD relation by assuming that. is a function of the redshift parameterized by two different expressions: eta(z) = 1 + eta(0)z and eta(z) = 1 +eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (eta(0) = 0). In the best scenario (linear parameterization), we obtain eta(0) = -0.28(-0.44)(+0.44) (2 sigma, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is eta(0) = -0.42(-0.34)(+0.34) (3 sigma, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the (7)Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular H alpha-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s(-1) are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson compact groups. We used Ha rotation curves (RCs) from high-resolution two-dimensional velocity fields of Fabry-Perot observations and the J-band photometry from the Two Micron All Sky Survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profiles, an isothermal core-like distribution, and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al. and 35 field galaxies of Spano et al. The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent of galaxy type and environment. We have found that core-like density profiles better fit the RCs than cuspy-like ones. No major differences have been found between field, cluster, and compact group galaxies with respect to their dark halo density profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We study the geometry of the circumstellar environment of the B[e] supergiant star GG Car. Methods. We present observations acquired using the IAGPOL imaging polarimeter in combination with the Eucalyptus-IFU spectrograph to obtain spectropolarimetric measurements of GG Car across Ha at two epochs. Polarization effects along the emission line are analysed using the Q-U diagram. In particular, the polarization position angle (PA) obtained using the line effect is able to constrain the symmetry axis of the disk/envelope. Results. By analysing the fluxes, GG Car shows an increase in its double-peaked Ha line emission relative to the continuum within the interval of our measurements (similar to 43 days). The depolarization line effect around Ha is evident in the Q-U diagram for both epochs, confirming that light from the system is intrinsically polarized. A rotation of the PA along Ha is also observed, indicating a counter-clockwise rotating disk. The intrinsic PA calculated using the line effect (similar to 85 degrees.) is consistent between our two epochs, suggesting a clearly defined symmetry axis of the disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. The underlying structural and dynamical variations of the disks are only partly understood. From observations of the bright Be-shell star. Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. Aims. The dense, long-time monitoring permits a better separation of repetitive and ephemeral variations. The broad wavelength coverage includes lines formed under different physical conditions, i.e. different locations in the disk, so that the dynamics can be probed throughout much of the disk. Polarimetry and interferometry constrain the spatial structure. All together, the objective is a better understand the dynamics and life cycle of decretion disks. Methods. Standard methods of data acquisition, reduction, and analysis were applied. Results. From 3 V/R cycles between 1997 and 2008, a mean cycle length in Ha of 1400-1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase may make the strongest contribution to the variability in cycle length. There is no obvious connection between the V/R cycle and the 133-day orbital period of the not otherwise detected companion. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of the equivalent width. They seem to form in separate regions of the disk, probably crossing the line of sight at different times. The interferometry has resolved the continuum and the line emission in Br gamma and HeI 2.06. The phasing of the Br gamma emission shows that the photocenter of the line-emitting region lies within the plane of the disk but is offset from the continuum source. The plane of the disk is constant throughout the observed V/R cycles. The observations lay the foundation for the fully self-consistent, one-armed, disk-oscillation model developed in Paper II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide evidence that indicates the star cluster Pfleiderer 2, which is projected in a rich field, as a newly identified Galactic globular cluster. Since it is located in a crowded field, core extraction and decontamination tools were applied to reveal the cluster sequences in B, V, and I color-magnitude diagrams (CMDs). The main CMD features of Pfleiderer 2 are a tilted red giant branch and a red horizontal branch, indicating a high metallicity around solar. The reddening is E(B - V) = 1.01. The globular cluster is located at a distance of d(circle dot) = 16 +/- 2 kpc from the Sun. The cluster is located 2.7 kpc above the Galactic plane and at a distance of R(GC) = 9.7 kpc from the Galactic center, which is unusual for a metal-rich globular cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. Our goal is to study the physical properties of the circumstellar environment of young stellar objetcs (YSOs). In particular, the determination of the scattering mechanism can help us to constrain the optical depth of the disk and/or envelope in the near infrared. Methods. We used the IAGPOL imaging polarimeter along with the CamIV infrared camera at the LNA observatory to obtain near infrared polarimetry measurements in the H band of a sample of optically visible YSOs, namely, eleven T Tauri stars and eight Herbig Ae/Be stars. An independent determination of the disk (or jet) orientation was obtained for twelve objects from the literature. The circumstellar optical depth could then be estimated by comparing the integrated polarization position angle (PA) with the direction of the major axis of the disk projected onto the plane of the sky. Optically thin disks have, in general, a polarization PA that is perpendicular to the disk plane. In contrast, optically thick disks have polarization PAs parallel to the disks. Results. Among the T Tauri stars, three are consistent with having optically thin disks (AS 353A, RY Tau and UY Aur) and five with optically thick disks (V536 Aql, DG Tau, DO Tau, HL Tau and LkH alpha 358). Among the Herbig Ae/Be stars, two stars exhibit evidence of optically thin disks (Hen 3-1191 and VV Ser) and two of optically thick disks (PDS 453 and MWC 297). Our results seem consistent with optically thick disks at near infrared bands, which are more likely to be associated with younger YSOs. Marginal evidence of polarization reversal is found in RY Tau, RY Ori, WW Vul, and UY Aur. In the first three cases, this feature can be associated with the UXOR phenomenon. Correlations with the IRAS colors and the spectral index yielded evidence of an evolutionary segregation in which the disks tend to be optically thin when they are older.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new set of oscillator strengths for 142 Fe II lines in the wavelength range 4000-8000 angstrom. Our gf-values are both accurate and precise, because each multiplet was globally normalized using laboratory data ( accuracy), while the relative gf-values of individual lines within a given multiplet were obtained from theoretical calculations ( precision). Our line list was tested with the Sun and high-resolution (R approximate to 10(5)), high-S/N (approximate to 700-900) Keck+HIRES spectra of the metal-poor stars HD 148816 and HD 140283, for which line-to-line scatter (sigma) in the iron abundances from Fe II lines as low as 0.03, 0.04, and 0.05 dex are found, respectively. For these three stars the standard error in the mean iron abundance from Fe II lines is negligible (sigma(mean) <= 0.01 dex). The mean solar iron abundance obtained using our gf-values and different model atmospheres is A(Fe) = 7.45(sigma = 0.02).