969 resultados para Algebraic renormalization
Resumo:
We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.
Resumo:
Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics.
Resumo:
We apply the subtractive renormalization method to the nucleon-nucleon interaction at Next-to-Next-to-Leading order (NNLO). Here we show the results for some uncoupled peripheral waves.
Resumo:
We investigate a class of conformal nonabelian-Toda models representing noncompact SL(2, R)/U(1) parafermions (PF) interacting with specific abelian Toda theories and having a global U(1) symmetry. A systematic derivation of the conserved currents, their algebras, and the exact solution of these models are presented. An important property of this class of models is the affine SL(2, R)(q) algebra spanned by charges of the chiral and antichiral nonlocal currents and the U(1) charge. The classical (Poisson brackets) algebras of symmetries VG(n), of these models appear to be of mixed PF-WG(n) type. They contain together with the local quadratic terms specific for the W-n-algebras the nonlocal terms similar to the ones of the classical PF-algebra. The renormalization of the spins of the nonlocal currents is the main new feature of the quantum VA(n)-algebras. The quantum VA(2)-algebra and its degenerate representations are studied in detail. (C) 1999 Academic Press.
Resumo:
A general construction of affine nonabelian (NA)-Toda models in terms of the axial and vector gauged two loop WZNW model is discussed. They represent integrable perturbations of the conformal sigma -models (with tachyons included) describing (charged) black hole type string backgrounds. We study the off-critical T-duality between certain families of axial and vector type integrable models for the case of affine NA-Toda theories with one global U(1) symmetry. In particular we find the Lie algebraic condition defining a subclass of T-selfdual torsionless NA-Toda models and their zero curvature representation. (C) 2001 Academic Press.
Resumo:
At hadron colliders, the search for R-parity violating supersymmetry can probe scalar masses beyond what is covered by pair production processes. We evaluate the next-to-leading order SUSY-QCD corrections to the associated stop or sbottom production with a lepton through R-parity violating interactions. We show that higher order corrections render the theoretical predictions more stable with respect to variations of the renormalization and factorization scales and that the total cross section is enhanced by a factor up to 70% at the Tevatron and 50% at the LHC. We investigate in detail how the heavy supersymmetric states decouple from the next-to-leading order process, which gives rise to a theory with an additional scalar leptoquark. In this scenario the inclusion of higher order QCD corrections increases the Tevatron reach on leptoquark masses by up to 40 GeV and the LHC reach by up to 200 GeV. (C) 2003 Published by Elsevier B.V. B.V.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.
Resumo:
We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for experimental glueball searches are discussed.
Resumo:
Topological charge screening in the QCD vacuum is found to provide crucial nonperturbative contributions to the short-distance expansion of the pseudoscalar (0-+) glueball correlator. The screening contributions enter the Wilson coefficients and are an indispensable complement to the direct instanton contributions. They restore consistency with the anomalous axial Ward identity and remedy several flaws in the 0-+ glueball sum rules caused by direct instantons in the absence of screening (lack of resonance signals, violation of the positivity bound and of the underlying low-energy theorem). The impact of the finite width of the instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also discussed. New predictions for the 0-+ glueball mass and decay constant are presented.
Resumo:
We review the work done by our group on cosmic topology. It ranges from early atempts to solve a famous controversy about quasars thought the multiplicity of images, to quantum cosmology in this context and an application to QED renormalization.
Resumo:
Employing Hirota's method, a class of soliton solutions for the N = 2 super mKdV equations is proposed in terms of a single Grassmann parameter. Such solutions are shown to satisfy two copies of N = 1 supersymmetric mKdV equations connected by nontrivial algebraic identities. Using the super Miura transformation, we obtain solutions of the N = 2 super KdV equations. These are shown to generalize solutions derived previously. By using them KdV/sinh-Gordon hierarchy properties we generate the solutions of the N = 2 super sinh-Gordon as well.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)