942 resultados para Ainsworth, Fred C. (Fred Crayton), 1852-1934.
Resumo:
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.
Resumo:
We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.
Resumo:
Funding • The pooled data coordination team (PBoffetta, MH, YCAL) were supported by National Cancer Institute grant R03CA113157 and by National Institute of Dental and Craniofacial Research grant R03DE016611 • The Milan study (CLV) was supported by the Italian Association for Research on Cancer (Grant no. 10068). • The Aviano study (LDM) was supported by a grant from the Italian Association for Research on Cancer (AIRC), Italian League Against Cancer and Italian Ministry of Research • The Italy Multicenter study (DS) was supported by the Italian Association for Research on Cancer (AIRC), Italian League Against Cancer and Italian Ministry of Research. • The Study from Switzerland (FL) was supported by the Swiss League against Cancer and the Swiss Research against Cancer/Oncosuisse [KFS-700, OCS-1633]. • The central Europe study (PBoffetta, PBrenan, EF, JL, DM, PR, OS, NS-D) was supported by the World Cancer Research Fund and the European Commission INCOCOPERNICUS Program [Contract No. IC15- CT98-0332] • The New York multicentre study (JM) was supported by a grant from National Institute of Health [P01CA068384 K07CA104231]. • The study from the Fred Hutchison Cancer Research Center from Seattle (CC, SMS) was supported by a National Institute of Health grant [R01CA048996, R01DE012609]. • The Iowa study (ES) was supported by National Instituteof Health [NIDCR R01DE011979, NIDCR R01DE013110, FIRCA TW001500] and Veterans Affairs Merit Review Funds. • The North Carolina studies (AFO) were supported by National Institute of Health [R01CA061188], and in part by a grant from the National Institute of Environmental Health Sciences [P30ES010126]. • The Tampa study (PLazarus, JM) was supported by National Institute of Health grants [P01CA068384, K07CA104231, R01DE013158] • The Los Angeles study (Z-F Z, HM) was supported by grants from National Institute of Health [P50CA090388, R01DA011386, R03CA077954, T32CA009142, U01CA096134, R21ES011667] and the Alper Research Program for Environmental Genomics of the UCLA Jonsson Comprehensive Cancer Center. • The Houston study (EMS, GL) was supported by a grant from National Institute of Health [R01ES011740, R01CA100264]. • The Puerto Rico study (RBH, MPP) was supported by a grant from National Institutes of Health (NCI) US and NIDCR intramural programs. • The Latin America study (PBoffetta, PBrenan, MV, LF, MPC, AM, AWD, SK, VW-F) was supported by Fondo para la Investigacion Cientifica y Tecnologica (FONCYT) Argentina, IMIM (Barcelona), Fundaco de Amparo a‘ Pesquisa no Estado de Sao Paulo (FAPESP) [No 01/01768-2], and European Commission [IC18-CT97-0222] • The IARC multicentre study (SF, RH, XC) was supported by Fondo de Investigaciones Sanitarias (FIS) of the Spanish Government [FIS 97/ 0024, FIS 97/0662, BAE 01/5013], International Union Against Cancer (UICC), and Yamagiwa-Yoshida Memorial International Cancer Study Grant. • The Boston study (KKelsey, MMcC) was supported by a grant from National Institute of Health [R01CA078609, R01CA100679]. • The Rome study (SB, GC) was supported by AIRC (Italian Agency for Research on Cancer). • The US multicentre study (BW) was supported by The Intramural Program of the National Cancer Institute, National Institute of Health, United States. • The Sao Paolo study (V W-F) was supported by Fundacao de Ampara a Pesquisa no Estado de Sao Paulo (FAPESP No 10/51168-0) • The MSKCC study (SS, G-P Y) was supported by a grant from National Institute of Health [R01CA051845]. • The Seattle-Leo stud (FV) was supported by a grant from National Institute of Health [R01CA030022] • The western Europe Study (PBoffetta, IH, WA, PLagiou, DS, LS, FM, CH, KKjaerheim, DC, TMc, PT, AA, AZ) was supported by European Community (5th Frame work Programme) grant no QLK1-CT-2001- 00182. • The Germany Heidelberg study (HR) was supported by the grant No. 01GB9702/3 from the German Ministry of Education and Research.
Resumo:
Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Fiona Leckie, Andrew MacColl, Jesús Martínez-Padilla, François Mougeot, Steve Redpath, Pablo Vergara† and Lucy M.I. Webster for samples; Keliya Bai, Daisy Brickhill, Edward Graham, Alyson Little, Daniel Mifsud, Lizzie Molyneux and Mario Röder for fieldwork assistance; Gillian Murray-Dickson and Laura Watt for laboratory assistance; Heather Ritchie for helpful comments on manuscript drafts; and all estate owners, factors and keepers for access to field sites, most particularly Stuart Young and Derek Calder (Edinglassie), Simon Blackett, Jim Davidson and Liam Donald (Invercauld and Glas Choille), Richard Cooke and Fred Taylor† (Invermark) and T. Helps (Catterick).
Resumo:
28 pages, 6 figures; version submitted to Proceedings of the National Academy of Sciences
Resumo:
28 pages, 6 figures; version submitted to Proceedings of the National Academy of Sciences
Resumo:
This article is protected by copyright. All rights reserved. Acknowledgements This study was funded by a BBSRC studentship (MAW) and NERC grants NE/H00775X/1 and NE/D000602/1 (SBP). The authors are grateful to Mario Röder and Keliya Bai for fieldwork assistance, and all estate owners, factors and keepers for access to field sites, most particularly MJ Taylor and Mike Nisbet (Airlie), Neil Brown (Allargue), RR Gledson and David Scrimgeour (Delnadamph), Andrew Salvesen and John Hay (Dinnet), Stuart Young and Derek Calder (Edinglassie), Kirsty Donald and David Busfield (Glen Dye), Neil Hogbin and Ab Taylor (Glen Muick), Alistair Mitchell (Glenlivet), Simon Blackett, Jim Davidson and Liam Donald (Invercauld), Richard Cooke and Fred Taylor† (Invermark), Shaila Rao and Christopher Murphy (Mar Lodge), and Ralph Peters and Philip Astor (Tillypronie). Data accessibility • Genotype data (DataDryad: doi:10.5061/dryad.4t7jk) • Metadata (information on sampling sites, phenotypes and medication regimen) (DataDryad: doi:10.5061/dryad.4t7jk)
Resumo:
Inscription: ERA rally Washington, D.C. Jul 9 1978
Resumo:
The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.
Resumo:
Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for upper and lower ice surface topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The global 1-minute dataset (RTopo-1 Version 1.0.5) has been split into two netCDF files. The first contains digital maps for global bedrock topography, ice bottom topography, and surface elevation. The second contains the auxiliary maps for data sources and the surface type mask. A regional subset that covers all variables for the region south of 50 deg S is also available in netCDF format. Datasets for the locations of grounding and coast lines are provided in ASCII format.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.
Resumo:
Background: The male germline in flowering plants differentiates by asymmetric division of haploid uninucleated microspores, giving rise to a vegetative cell enclosing a smaller generative cell, which eventually undergoes a second mitosis to originate two sperm cells. The vegetative cell and the sperm cells activate distinct genetic and epigenetic mechanisms to control pollen tube growth and germ cell specification, respectively. Therefore, a comprehensive characterization of these processes relies on efficient methods to isolate each of the different cell types throughout male gametogenesis. Results: We developed stable transgenic Arabidopsis lines and reliable purification tools based on Fluorescence-Activated Cell Sorting (FACS) in order to isolate highly pure and viable fractions of each cell/nuclei type before and after pollen mitosis. In the case of mature pollen, this was accomplished by expressing GFP and RFP in the sperm and vegetative nuclei, respectively, resulting in 99% pure sorted populations. Microspores were also purified by FACS taking advantage of their characteristic small size and autofluorescent properties, and were confirmed to be 98% pure. Conclusions: We provide simple and efficient FACS-based purification protocols for Arabidopsis microspores, vegetative nuclei and sperm cells. This paves the way for subsequent molecular analysis such as transcriptomics, DNA methylation analysis and chromatin immunoprecipitation, in the developmental context of microgametogenesis in Arabidopsis.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
Trees and shrubs numbered.