929 resultados para Aerobic scope


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of an experimental project on the treatment of bleach plant effluents the results of biodegradability and toxicity assessment of effluents from a bench-scale horizontal anaerobic immobilized bioreactor (HAIB) are discussed in this paper. The biodegradability of the bleach plant effluents from a Kraft pulp mill treated in the HAIB was evaluated using the modified Zahn-Wellens test. The inoculum came from a pulp mill wastewater treatment plant and the dissolved organic carbon (DOC) was used as the indicator of organic matter removal. The acute and chronic toxicity removal during the anaerobic treatment was estimated using Daphnia similis and Ceriodaphnia silvestrii respectively. Moreover, the evaluation of chromosome aberrations (CA), micronucleus frequencies (MN) and mitotic index (IM) in Allium cepa cells were used as genotoxicity indicators. The results indicate that the effluents from the anaerobic reactor are amenable to aerobic polishing. Acute and chronic toxicity were reduced by 90 and 81%, respectively. The largest CA and MN incidence in the meristematic cells of A. cepa were observed after exposure to the raw bleach plant effluent. The HAIB was able to reduce the acute and chronic toxicity as well as chromosome aberrations and the occurrence of micronucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to study the operational feasibility of nitrification and denitrification processes in a mechanically stirred sequencing batch reactor (SBR) operated in batch and fed-batch mode. The reactor was equipped with a draft-tube to improve mass transfer and contained dispersed (aerobic) and granulated (anaerobic) biomass. The following reactor variables were adjusted: aeration time during the nitrification step; dissolved oxygen concentration, feed time defining batch and fed-batch phases, concentration of external carbon source used as electron donor during the denitrification stage and volumetric ammonium nitrogen load in the influent. The reactor (5 L volume) was maintained at 30 +/- 1 degrees C and treated either 1.0 or 1.5 L wastewater in 8-h cycles. Ammonium nitrogen concentrations assessed were: 50 (condition 1) and 100 mgN-NH(4)(+).L(-1) (condition 2), resulting in 29 and 67 mgN-NH(4)(+).L-1-d(-1), respectively. A synthetic medium and ethanol were used as external carbon sources (ECS). Total nitrogen removal efficiencies were 94.4 and 95.9% when the reactor was operated under conditions 1 and 2, respectively. Low nitrite (0.2 and 0.3 mgN-NO(2)(-).L(-1), respectively) and nitrate (0.01 and 0.3 mgN-NO(3)(-).L(-1), respectively) concentrations were detected in the effluent and ammonium nitrogen removal efficiencies were 97.6% and 99.6% under conditions 1 and 2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological nitritation/denitritation process in the removal of organic matter and nitrogen in a landfill leachate was studied using an activated sludge sequencing batch reactor Treatment cycles were formed by an anoxic and an aerobic phases in which the conditions for oxidation of the influent N load and the prevalence of nitrite concentration at the end of aerobic treatment cycles were determined as well as the use of organic matter present in the leachate as a carbon source for denim-firing organisms in the anoxic stage The removal efficiencies of N-NO(2) at the end of the anoxic process (48h) ranged between 14 and 30% indicating low availability of biodegradable organic matter in the leachate As for the accumulation of N-NO(2) at the end of the aerobic phase (48h) of treatment cycles imbalances were not observed while 100% removal efficiencies of N and specific nth-dation rates from 0 095 to 0 158kgN-NH(3)/kgSSV per day were recorded demonstrating the applicability of simplified nitrification in the treatment of effluents with low C/N ratios

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow pumps are important tools in several engineering areas, such as in the fields of bioengineering and thermal management solutions for electronic devices. Nowadays, many of the new flow pump principles are based on the use of piezoelectric actuators, which present some advantages such as miniaturization potential and lower noise generation. In previous work, authors presented a study of a novel pump configuration based on placing an oscillating bimorph piezoelectric actuator in water to generate flow. It was concluded that this oscillatory behavior (such as fish swimming) yields vortex interaction, generating flow rate due to the action and reaction principle. Thus, following this idea the objective of this work is to explore this oscillatory principle by studying the interaction among generated vortex from two bimorph piezoelectric actuators oscillating inside the same pump channel, which is similar to the interaction of vortex generated by frontal fish and posterior ones when they swim together in a group formation. It is shown that parallel-series configurations of bimorph piezoelectric actuators inside the same pump channel provide higher flow rates and pressure for liquid pumping than simple parallel-series arrangements of corresponding single piezoelectric pumps, respectively. The scope of this work includes structural simulations of bimorph piezoelectric actuators, fluid flow simulations, and prototype construction for result validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of the treatment process for residual waters from a brewery operating under the modality of an anaerobic reactor and activated sludge combination was studied in two phases. In the first stage, lasting for six months, the characteristics and parameters of the plant operation were analyzed, wherein a diversion rate of more than 50% to aerobic treatment, the use of two aeration tanks and a high sludge production prevailed. The second stage comprised four months during which the system worked under the proposed operational model, with the aim of improving the treatment: reduction of the diversion rate to 30% and use of only one aeration tank At each stage, TSS, VSS and COD were measured at the entrance and exit of the anaerobic reactor mid the aeration tanks. The results were compared with the corresponding design specifications and the needed conditions were applied to reduce the diversion rate towards the aerobic process through monitoring the volume and concentration of the affluent, while applying the strategic changes in reactor parameters needed to increase its efficiency. A diversion reduction from 53 to 34% was achieved, reducing the sludge discharge generated in the aerobic system from 3670mg TSS/l. with two aeration tanks down to 2947mf TSS/l using one tank keeping the same relation VSS:TSS (0.55) and an efficiency of total removal of 98% in terms of COD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS (13)C NMR spectroscopy. HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general. an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Biopharmaceutics Classification System (BCS) is a tool that was created to categorize drugs into different groups according to their solubility and permeability characteristics. Through a combination of these factors and physiological parameters, it is possible to understand the absorption behavior of a drug in the gastrointestinal tract, thus contributing to cost and time reductions in drug development, as well as reducing exposure of human subjects during in vivo trials. Solubility is attained by determining the equilibrium under conditions of physiological pH, while different methods may be employed for evaluating permeability. On the other hand, the intrinsic dissolution rate (IDR), which is defined as the rate of dissolution of a pure substance under constant temperature, pH, and surface area conditions, among others, may present greater correlation to the in vivo dissolution dynamic than the solubility test. The purpose of this work is to discuss the intrinsic dissolution test as a tool for determining the solubility of drugs within the scope of the Biopharmaceutics Classification System (BCS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5-76.0% and 13.2-19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m(biogas)(3)/kgCOD(i)) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO(2) was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 +/- 0.006 g(DM)/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimally processed leafy vegetables are ready-to-eat (RTE) products very attractive to consumers looking for healthy and convenient meals. However, the microbiological safety of these foods is of special concern due to the absence of lethal treatments during processing. In the present study, indicator microorganisms, Listeria spp. and Salmonella spp. were determined for 162 samples of minimally processed leafy vegetables commercialized in Brazil. Psychrotrophic aerobic bacterial populations >5 log CFU/g were found in 96.7% of the samples, while total and thermotolerant coliforms were detected respectively in 132 (81.5%) and 107 (66%) of vegetables analyzed. Escherichia coil was present in 86 (53.1%) samples analyzed and Listeria spp. and Salmonella spp. were detected respectively in 6 (3.7%) and 2 (1.2%) samples. These results indicate the need of implementing quality programs in the production chain of RTE vegetables to improve shelf life and microbiological safety. (C) 2011 Elsevier Ltd. All rights reserved.